Cho tam giác ABC có đường cao AH.Biết AC = 9cm,AB = 12cm,BC = 15cm.Lấy M,N lần lượt là trung điểm của AH và BH.
a)Chứng minh tam giác ABC vuông tại A.
b)Chứng minh tam HNM đồng dạng với tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
hình bạn tự vẽ
a) Xét ΔHBA và ΔABC có :
^H = ^A = 900
^B chung
=> ΔHBA ~ ΔABC (g.g)
b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm
Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC
=> BC = AB2/HB = 152/9 = 25cm
Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm
=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2
c) mình chưa nghĩ ra :v
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
a. xét tam giác AHB và tam giác ABC có:
góc H= góc A=90o
góc B chung
-> tam giác AHB~tam giác ABC (g.g)
b. thiếu đề rồi bạn.
a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)
\(BC^2=20^2=400\)(cm)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
Xét Δ DNC và Δ ABC có:
\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)
Chung \(\widehat{C}\)
⇒Δ DNC \(\sim\) Δ ABC (g.g)
b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)
Δ DNC \(\sim\) Δ ABC (cma)
\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)
c, Xét Δ DBM và Δ ABC có:
Chung \(\widehat{B}\)
\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)
⇒Δ DBM \(\sim\) Δ ABC(g.g)
\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)
Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M
\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
trùng đề tui nè