K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

b,

Tam giác MNC vuông tại C có K là trung điểm của MN nên 

KC=KM=KN

ta có: OK đi qua trung điểm của dây MN nên OK là trung trực của MN

KO2=OM2-KM2=OM2-KC2

=> KO2+KC2=OM2-KC2+KC2=OM2=AB2/4 không đổi

24 tháng 6 2022

? bro

28 tháng 12 2015

M = 292n - 140n - 1

= (292)n - 140n - 1

= ...1n - ...0 - 1

= ....1 - ....0 - ....1

= ....1 - 1

= ....0

Vậy

30 tháng 4 2020

\(7^{n+1}+16.7^n+6^{2n+1}⋮29\)(1)

Ta có: \(7^{n+1}+16.7^n+6^{2n+1}\)

\(=6.6^{2n}-6.7^n+29.7^n\)

\(=6\left(36^n-7^n\right)+29.7^n⋮29\)

Vì \(36^n-7^n⋮\left(36-7\right)\)

Vậy (1) đúng với mọi số tự nhiên n.

22 tháng 4 2018

Bài 1 :

Ta có :

a chia 3 dư 1 a=3k+1⇒a=3k+1

b chia 3 dư 2 b=3k1+2⇒b=3k1+2 (k;k1N)(k;k1∈N)

ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2

Mà 3k.k1+2.3k+3.k133k.k1+2.3k+3.k1⋮3

3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2

ab⇒ab chia 3 dư 2 đpcm→đpcm

Bài 2 :

Ta có :

n(2n3)2n(n+1)n(2n−3)−2n(n+1)
=2n23n2n22n=2n2−3n−2n2−2n
=5n5=−5n⋮5

n(2n3)3n(n+1)5⇒n(2n−3)−3n(n+1)⋮5 với mọi n

đpcm

22 tháng 4 2018

Bài 1: 

a=3n+1 

b= 3m+2 

a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.

Bài 2: 

  n(2n-3)-2n(n+1) 

=2n^2-3n-2n^2-2n 

= -5n 

-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5 

vậy n(2n-3)-2n(n+1) chia hết cho 5

16 tháng 11 2023

EZ NUB BRO CRY :>

Giả sử : A=(2n+3)2-(2n-1)2

=(4n2+12n+9)-(4n2-4n+1)

=(4n2-4n2)+(12n+4n)+(9-1)

=16n+8

=8(2n+1)   ⋮ 8

Vậy A⋮8 (đpcm)

học lại hàng đẳng thức đáng nhớ đi bro :>

 

 

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

13 tháng 6 2023

\(5^{60n}< 2^{140n}< 3^{100n}\)

\(5^{60n}=\left(5^3\right)^{20n}=125^{20n}\\ 2^{140n}=\left(2^7\right)^{20n}=128^{20n}\\ 3^{100n}=\left(3^5\right)^{20n}=243^{20n}\)

 Mà\(125< 128< 243\Rightarrow125^{20n}< 128^{20n}< 243^{20n}\Rightarrow5^{60n}< 2^{140n}< 3^{100n}\) 

Vậy đã CMR: \(5^{60n}< 2^{140n}< 3^{100n}\)

8 tháng 11 2015

Đặt A = n(n+1)(2n+1) 

+ n = 2k  => A chia hết cho 2

+ n =2k+1 => n+1 = 2k+1+1 =2(k+1) chia hết cho 2 => A chia hết cho 2

Vậy A luôn chia hết cho 2                (1)

+n=3k  => A chia hết cho 3

+n= 3k+1 => 2n+1 = 2(3k+1)+1 = 3(2k+1)  chia hết cho 3=> A chia hết cho 3

+n= 3k+2 => n+1 = 3k+2+1 =3(k+1) chia hết cho 3

Vậy A luôn chia hết cho 3            (2)

Từ (1);(2) =>  A chia hết cho 2.3 =6  Với mọi n thuộc N

8 tháng 11 2015

+ Nếu n chia hết cho 3 thì  n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => 2n chia 3 dư 2 => 2n + 1 chia hết cho 3 =>  n(n+1)(2n+1) chia hết cho 3 

+ Nếu n chia 3 dư 2 => n + 1 chia hết cho 3 =>  n(n+1)(2n+1) chia hết cho 3

=>  n(n+1)(2n+1) chia hết cho 3 với mọi n.     

Ta lại thấy n(n + 1) là tích 2 số liên tiếp => chia hết cho 2 =>  n(n+1)(2n+1) chia hết cho 2.

=>  n(n+1)(2n+1) chia hết cho 2 và 3 =>  n(n+1)(2n+1) chia hết cho 6 (Vì ƯCLN(2; 3) = 6)