Cho tam giác ABC vuông tại B< phân giác AD
a, So sánh góc ADB và góc ADC
b, Trên tia AC lấy điểm H sao cho AH = AB. Chứng minh rằng DH vuông góc AC
c, Hạ CK vuông góc với AD. Chứng minh rằng AB, DH, CK đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AD chung
góc BAD=góc CAD
AB=AC
=>ΔABD=ΔACD
b: Xét ΔDHB và ΔDHC có
DH chung
HB=HC
DB=DC
=>ΔDHB=ΔDHC
=>góc BDH=góc CDH
=>DH là phân giác của góc BDC
c: ΔABC cân tại A
mà AH là phân giác
nên AH vuông góc CB
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
c: Ta có: BA=BH
DA=DH
Do đó: BD là đường trung trực của AH
hay BD⊥AH
Áp dụng định lí pitago cho tam giác ADH vuông tại H và tam giác HAC vuông tại H
=> AH2 = AD2- DH2 và AH2 = AC2 - HC2
=> AD2 - DH2 = AC2 - HC2
=> AD2 + HC2 = AC2 + DH2
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
a) Ta có: \(\widehat{ADC}=\widehat{ABD}+\widehat{BAD}=90^0+\widehat{BAD}\)
\(\Rightarrow\widehat{ADC}>90^0\). Mà \(\widehat{ADC}+\widehat{ADB}=180^0\Rightarrow\widehat{ADB}< \widehat{ADC}\)
b) \(\Delta ABD=\Delta AHD\left(c.g.c\right)\Rightarrow\widehat{ABD}=\widehat{AHD}=90^0\)(2 góc tương ứng)
\(\Rightarrow DH⊥AC\)
c) Gọi AB và CK cắt nhau tại điểm I.
Xét \(\Delta ADC\): \(CI⊥AD\) tại K và \(AI⊥CD\) tại B.
=> I là trực tâm của \(\Delta ADC\). Mà \(DH⊥AC\)=> I,D,H thẳng hàng
=> AB,DH,CK đồng quy.