K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 1

Giới hạn đã cho hữu hạn nên \(a=-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(b-x\right)^2-\left(x^2-6x+2\right)}{b-x+\sqrt{x^2-6x+2}}=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(6-2b\right)x+b^2-2}{-x+\sqrt{x^2-6x+2}+b}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{6-2b+\dfrac{b^2-2}{x}}{-1-\sqrt{1-\dfrac{6}{x}+\dfrac{2}{x^2}}+\dfrac{b}{x}}=\dfrac{6-2b}{-2}=5\)

\(\Rightarrow b=8\)

Cả 4 đáp án đều sai, số lớn hơn là 8

NV
22 tháng 3 2022

Giới hạn đã cho hữu hạn khi và chỉ khi \(b=1\)

Khi đó: 

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{-ax+1}{\sqrt{x^2-ax+1}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-a+\dfrac{1}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{1}{x^2}}+1}=-\dfrac{a}{2}\)

\(\Rightarrow-\dfrac{a}{2}=2\Rightarrow a=-4\)

Vậy \(\left(a;b\right)=\left(-4;1\right)\)

27 tháng 1 2021

e sửa chut ạ;  \(\lim\limits_{x\rightarrow1}\) 

NV
27 tháng 1 2021

\(b\) hữu hạn nên \(x^2+ax+2=0\) có nghiệm \(x=1\)

\(\Rightarrow1+a+2=0\Rightarrow a=-3\)

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(x-2\right)\left(\sqrt{x}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\left(x-2\right)\left(\sqrt{x}+1\right)}=-\dfrac{1}{2}\Rightarrow b=-\dfrac{1}{2}\)

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)

9 tháng 2 2021

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[n]{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)}-x\right)\\ =\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)-x^n}{\sqrt[n]{\left(\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)\right)^{n-1}}+...+x^{n-1}}\right)\)

= hệ số xn-1 trên tử/hệ số xn-1 dưới mẫu  = \(\dfrac{a_1+a_2+...+a_n}{n}\)

8 tháng 11 2023

\(4\sqrt{2}x\) ạ

NV
27 tháng 1 2021

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x+1\right)\sqrt{2x+1}}{\sqrt{5x^3+x+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(1+\dfrac{1}{x}\right)\sqrt{2+\dfrac{1}{x}}}{\sqrt{5+\dfrac{1}{x^2}+\dfrac{2}{x^3}}}=\sqrt{\dfrac{2}{5}}\)

Bạn coi lại, \(x\rightarrow-\infty\) hay \(+\infty\) nhỉ? (Dù a; b không đổi, vẫn là 2 và 5 nhưng \(x\rightarrow+\infty\) thì kết quả phải dương, ko có dấu trừ đằng trước)

27 tháng 1 2021

Nguyễn Việt Lâm

e viet nhâm ạ: \(x\rightarrow-\infty\)

4 tháng 4 2017

a) (x4 – x2 + x - 1) = x4(1 - ) = +∞.

b) (-2x3 + 3x2 -5 ) = x3(-2 + ) = +∞.

c) = = +∞.

d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}+x}{5-2x}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left|x\right|\sqrt{1+\dfrac{1}{x^2}}+x}{5-2x}\)
 \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{1+\dfrac{1}{x^2}}+x}{5-2x}\)\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}+1}{\dfrac{5}{x}-2}=-1\).

 

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(a+1\right)x^2-\left(2a+b\right)x+2b+1}{x-2}\right)\)

Giới hạn hữu hạn khi \(a+1=0\Rightarrow a=-1\)

Khi đó: \(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(2-b\right)x+2b+1}{x-2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{2-b+\dfrac{2b+1}{x}}{1-\dfrac{2}{x}}=2-b=-5\)

\(\Rightarrow b=7\)

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Bài 1:
\(\lim\limits _{x\to 1}\frac{4x^6-5x^5+x}{(1-x)^2}=\lim\limits _{x\to 1}\frac{x(x-1)^2(4x^3+3x^2+2x+1)}{(1-x)^2}\)

\(=\lim\limits _{x\to 1}x(4x^3+3x^2+2x+1)=1(4.1^3+3.1^2+2.1+1)=10\)

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Bài 3:

\(\lim\limits _{x\to +\infty}[\sqrt{9x^2-4x+3}-(ax+b)]=0\)

\(\Rightarrow \lim\limits _{x\to +\infty}\frac{\sqrt{9x^2-4x+3}-(ax+b)}{x}=0\)

\(\Leftrightarrow \lim\limits _{x\to +\infty}\left(\sqrt{9-\frac{4}{x}+\frac{3}{x^2}}-a+\frac{b}{x}\right)=0\)

\(\Leftrightarrow a=3\)

Thay $a=3$ vào đk ban đầu:

\(\lim\limits _{x\to +\infty}[\sqrt{9x^2-4x+3}-3x-b]=0\)

\(\Leftrightarrow \lim\limits _{x\to +\infty} (\sqrt{9x^2-4x+3}-3x)=b\)

\(\Leftrightarrow \lim\limits _{x\to +\infty}\frac{-4x+3}{\sqrt{9x^2-4x+3}+3x}=b\)

\(\Leftrightarrow \lim\limits _{x\to +\infty}\frac{-4+\frac{3}{x}}{\sqrt{9-\frac{4}{x}+\frac{3}{x}}+3}=b\)

\(\Leftrightarrow \frac{-4}{6}=b\Leftrightarrow b=-\frac{2}{3}\)