Cho tam giác ABC vuông tại A và có đường cao AH. Đường tròn đường kính AH cắt các cạnh AB,AC lần lượt tại E và F.
1/chứng minh tứ giác AEHF là hình chữ nhật
2/chứng minh AE.AB=ÀF.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2=AE*AB
=>AE/AC=AF/AB
=>ΔAEF đồng dạng vơi ΔACB
a) ta có : O là trung điểm của AH
xét đường tròn tâm O,có:E thuộc đường tròn
→tam giác A,E,H vuông tại E (t/c đường tròn)
F thược đường tròn
→tam giác A,F,H vuông tại F (t/c đường tròn)
Xét tứ giác A,E,H,F ta có Â =90 (ΔA,B,C vuông tại A)
Ê = F =90 (Δ vuông )
→tứ giác A,E,H,F là hình chữ nhật
a: Xét (AH/2) có
ΔAMH nội tiếp
AH là đường kính
Do đó: ΔAMH vuông tại M
Xét (HA/2)có
ΔAHN nội tiếp
AH là đường kính
Do đó;ΔAHN vuông tại N
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
b: AM*AB=AH^2
AN*AC=AH^2
Do dó: AM*AB=AN*AC
c: góc NME
=góc NMH+góc EMH
=góc HAC+góc HCA=90 độ
=>NM là tiếp tuyến của (E)
a: góc AEH=1/2*180=90 độ
=>HE vuông góc AB
góc AFH=1/2*180=90 độ
=>HF vuông góc AC
Vì góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: AEHF làhình chữ nhật
=>góc AFE=góc AHE=góc B
=>góc B+góc FCB=180 độ
=>BEFC nội tiếp
1) Ta có: \(\Delta AHF\) nội tiếp đường tròn (D) có AH là đường kính
\(\Rightarrow\widehat{AFH}=90^o\) (1)
\(\Delta AHE\) nội tiếp đường tròn (D) có AH là đường kính
\(\Rightarrow\widehat{AEH}=90^o\) (2)
Mà: \(\widehat{EAF}=90^o\left(gt\right)\) (3)
Từ (1), (2), (3) \(\Rightarrow\) Tứ giác AEHF có 3 góc vuông nên là hình chữ nhật
2) Áp dụng hệ thức lượng cho ΔABH có đường cao HE ta có:
\(AE\cdot AB=AH^2\) (4)
Áp dụng hệ thức lượng cho ΔACH có đường cao HF ta có:
\(AF\cdot AC=AH^2\) (5)
Từ (4) và (5) ta có: \(AE\cdot AB=AF\cdot AC\left(đpcm\right)\)