K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1

\(=\dfrac{7}{1.8}+\dfrac{7}{8.15}+\dfrac{7}{15.24}+...++\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)

\(=1-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{24}+...+\dfrac{1}{7n-6}-\dfrac{1}{7n+1}+\dfrac{1}{7n+1}\)

\(=1\)

\(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}+\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)

\(=\dfrac{7}{1\cdot8}+\dfrac{7}{8\cdot15}+\dfrac{7}{360}+\dfrac{1}{7n-6}-\dfrac{1}{7n+1}+\dfrac{1}{7n+1}\)

\(=1-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{7}{360}+\dfrac{1}{7n-6}\)

\(=\dfrac{14}{15}+\dfrac{7}{360}+\dfrac{1}{7n-6}=\dfrac{343}{360}+\dfrac{1}{7n-6}\)

\(=\dfrac{343\left(7n-6\right)+360}{360\left(7n-6\right)}\)

\(=\dfrac{2401n-1698}{360\left(7n-6\right)}\)

14 tháng 1

\(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}+\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\\ =\left(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}\right)+\left(\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\right)\\ =\left(\dfrac{315}{360}+\dfrac{21}{360}+\dfrac{7}{360}\right)+\left(\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{7n-6}{\left(7n+1\right)\left(7n-6\right)}\right)\)

\(=\dfrac{343}{360}+\dfrac{7n+1}{\left(7n-6\right)\left(7n+1\right)}\\ =\dfrac{343}{360}+\dfrac{1}{7n-6}\\ =\dfrac{343\left(7n-6\right)+360}{360\left(7n-6\right)}\\ =\dfrac{2401n-2058+360}{360\left(7n-6\right)}\\ =\dfrac{2401n-1698}{360\left(7n-6\right)}\)

 

a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)

b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)

 

a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)

\(=\dfrac{n}{2n+1}\)

b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)

30 tháng 11 2017

Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi

30 tháng 11 2017

0 cần trả lời hết cũng đc

12 tháng 9 2021

Giúp mình với khocroi

\(\left(8+\dfrac{9}{4}+\dfrac{2}{7}\right)-\left(-6-\dfrac{3}{7}+\dfrac{5}{4}\right)-\left(3+\dfrac{2}{4}-\dfrac{9}{7}\right)\)

\(=8+\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)

\(=11+\dfrac{1}{2}+2\)

\(=\dfrac{27}{2}\)

a) Ta có: \(\dfrac{-3}{7}+\dfrac{15}{26}-\left(\dfrac{2}{13}-\dfrac{3}{7}\right)\)

\(=\dfrac{-3}{7}+\dfrac{15}{26}-\dfrac{2}{13}+\dfrac{3}{7}\)

\(=\dfrac{15}{26}-\dfrac{4}{26}\)

\(=\dfrac{11}{26}\)

b) Ta có: \(2\cdot\dfrac{3}{7}+\left(\dfrac{2}{9}-1\dfrac{3}{7}\right)-\dfrac{5}{3}:\dfrac{1}{9}\)

\(=\dfrac{6}{7}+\dfrac{2}{9}-\dfrac{10}{7}-\dfrac{5}{3}\cdot9\)

\(=\dfrac{-4}{7}+\dfrac{2}{9}-15\)

\(=\dfrac{-36}{63}+\dfrac{14}{63}-\dfrac{945}{63}\)

\(=\dfrac{-967}{63}\)

c) Ta có: \(\dfrac{-11}{23}\cdot\dfrac{6}{7}+\dfrac{8}{7}\cdot\dfrac{-11}{23}-\dfrac{1}{23}\)

\(=\dfrac{-11}{23}\cdot\left(\dfrac{6}{7}+\dfrac{8}{7}\right)-\dfrac{1}{23}\)

\(=\dfrac{-11}{23}\cdot2-\dfrac{1}{23}\)

\(=-1\)

d) Ta có: \(\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\left(\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{24}\right)\)

\(=\left(\dfrac{-377}{231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\left(\dfrac{4}{24}-\dfrac{3}{24}-\dfrac{1}{24}\right)\)

\(=\left(\dfrac{-377}{231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot0\)

=0

31 tháng 12 2023

a: \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}\cdot\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)

\(=\left(\dfrac{55}{3}:15+\dfrac{26}{3}\cdot\dfrac{7}{4}\right):\left[\left(12+\dfrac{1}{3}+8+\dfrac{6}{7}\right)-\dfrac{7}{18}\right]\cdot\dfrac{445}{1704}\)

\(=\left(\dfrac{55}{45}+\dfrac{91}{6}\right):\left[20+\dfrac{101}{126}\right]\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}:\dfrac{2621}{126}\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}\cdot\dfrac{126}{2621}\cdot\dfrac{445}{1704}\simeq0,21\)

b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

c: \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)

\(=\dfrac{1}{n+1}\)

d: \(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124\cdot\left(-37\right)+63\cdot\left(-124\right)\)

\(=-66\cdot\dfrac{33-22+6}{66}+124\left(-37-63\right)\)

\(=-17-12400=-12417\)

e: \(\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)

\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(=\dfrac{7}{4}\cdot33\cdot\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)

\(=33\cdot\dfrac{7}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\dfrac{4}{21}=\dfrac{33\cdot1}{3}=11\)