K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left\{{}\begin{matrix}2x-y=m+5\\\left(m-1\right)x-my=3m-1\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2}{m-1}\ne\dfrac{-1}{-m}\)

=>\(\dfrac{2}{m-1}-\dfrac{1}{m}\ne0\)

=>\(\dfrac{2m-m+1}{m\left(m-1\right)}\ne0\)

=>\(\dfrac{m+1}{m\left(m-1\right)}\ne0\)

=>\(m\notin\left\{0;1;-1\right\}\)

Để hệ có phương trình có vô số nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}=\dfrac{m+5}{3m-1}\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{1}{m}\\\dfrac{2}{m-1}=\dfrac{m+5}{3m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=m-1\\2\left(3m-1\right)=\left(m+5\right)\left(m-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2+4m-5=6m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3=0\end{matrix}\right.\Leftrightarrow m=-1\)

Để hệ phương trình vô nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}\ne\dfrac{m+5}{3m-1}\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{-1}{-m}\\\dfrac{2}{m-1}\ne\dfrac{m+5}{3m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m=-m+1\\2\left(3m-1\right)\ne\left(m-1\right)\left(m+5\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=1\\m^2+4m-5\ne6m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3\ne0\end{matrix}\right.\)

=>\(m\in\varnothing\)

a: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\3m^2-m=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\\left(m-1\right)\left(3m+1\right)=0\end{matrix}\right.\)

=>m=1

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{m}{1}\ne\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\m^2+m\ne3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\m^2-2m+1\ne0\end{matrix}\right.\)

=>m=-1

b: Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}=\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{4}{m}=\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\10m-m^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-10m+16=0\end{matrix}\right.\)

=>m=2

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}\ne\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{m}{1}\ne\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\4m\ne10-m\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{4}{m}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

\(\left\{{}\begin{matrix}2x-my=m^2\\x+y=2\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì \(\dfrac{2}{1}\ne\dfrac{-m}{1}\)

=>\(m\ne-2\)

Để hệ có vô số nghiệm thì \(\dfrac{2}{1}=\dfrac{-m}{1}=\dfrac{m^2}{2}\)

=>\(\left\{{}\begin{matrix}m=-2\\m^2=-2m\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ vô nghiệm thì \(\dfrac{2}{1}=-\dfrac{m}{1}\ne\dfrac{m^2}{2}\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{1}=-\dfrac{m}{1}\\\dfrac{m^2}{2}\ne\dfrac{-m}{1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m^2\ne-2m\end{matrix}\right.\)

=>\(m\in\varnothing\)

NV
2 tháng 3 2021

\(\Rightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1\\x+my=m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+1\right)x=\left(m-1\right)\left(2m+1\right)\\x+my=m+1\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m=\pm1\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=\dfrac{m}{m+1}\end{matrix}\right.\)

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

1 tháng 8 2018

mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .

d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)

th1: \(m+2=0\Leftrightarrow m=-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có vô số nghiệm

th2: \(m+2\ne0\Leftrightarrow m\ne-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

vậy khi +) \(m=-2\) phương trình có vô số nghiệm

+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

25 tháng 8 2018

Bạn làm phần c hộ mình với

5 tháng 5 2017

\(\left\{{}\begin{matrix}2x+\left(3m+1\right)y=m-1\\\left(m+2\right)x+\left(4m+3\right)y=m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(m+2\right)x+\left(m+2\right)\left(3m+1\right)y=\left(m-1\right)\left(m+2\right)\\2\left(m+2\right)x+2\left(4m+3\right)y=2m\end{matrix}\right.\)
\(\Rightarrow\left(m+2\right)\left(3m+1\right)y-2.\left(4m+3\right)y\)\(=\left(m-1\right)\left(m+2\right)-2m\)
\(\Leftrightarrow\left(3m^2-m-4\right)y=m^2-m-2\)
\(\Leftrightarrow\left(m+1\right)\left(3m-4\right)y=\left(m+1\right)\left(m-2\right)\) (*)
Th1: \(\left(m+1\right)\left(3m-4\right)=0\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{4}{3}\end{matrix}\right.\)
Với \(m=-1\) thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}2x-2y=-2\\x-y=-1\end{matrix}\right.\)\(\Leftrightarrow x=y-1\).
Khi đó hệ phương trình có vô số nghiệm dạng: \(\left\{{}\begin{matrix}x=y-1\\y\in R\end{matrix}\right.\).
Với \(m=\dfrac{4}{3}\) thay vào (*) ta được: \(0y=-\dfrac{2}{3}\) (Vô nghiệm)
Khi đó hệ phương trình vô nghiệm.
Th2: \(\left(m+1\right)\left(3m-4\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\m\ne\dfrac{4}{3}\end{matrix}\right.\).
Khi đó (*) có nghiệm: \(y=\dfrac{m-2}{3m-4}\).
Thay vào ta được: \(2x+\left(3m+1\right).\dfrac{m-2}{3m-4}=m-1\)
\(\Leftrightarrow x=\dfrac{3-m}{3m-4}\).
Thử lại: \(\left(x;y\right)=\left(\dfrac{3-m}{3m-4};\dfrac{m-2}{3m-4}\right)\) thỏa mãn hệ phương trình.
Biện luận:
Với \(m=-1\) hệ phương trình có vô số nghiệm loại: \(\left\{{}\begin{matrix}x=y-1\\y\in R\end{matrix}\right.\).

Với \(m=\dfrac{4}{3}\) hệ phương trình vô nghiệm.
Với \(\left\{{}\begin{matrix}m\ne-1\\m\ne\dfrac{4}{3}\end{matrix}\right.\) hệ có nghiệm duy nhất là: \(\left(x;y\right)=\left(\dfrac{3-m}{3m-4};\dfrac{m-2}{3m-4}\right)\).

8 tháng 11 2019
https://i.imgur.com/terBvc2.jpg