K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2024

Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n+1 và 2n+3 nguyên tố cùng nhau với mọi \(n\in N\)

NV
4 tháng 1 2024

Gọi \(d=ƯC\left(n+3;2n+5\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\) \(\Rightarrow2\left(n+3\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(n+3\) và \(2n+5\) nguyên tố cùng nhau với mọi số tự nhiên n

Gọi d = ƯCLN(n + 3, 2n + 50 với d ∈ N

 

n+3d2n+5d ⇒2(�+3)−(2�+5)⋮�2(n+3)(2n+5)d

⇒1⋮�⇒�=11dd=1

Vậy �+3n+3 và 2�+52n+5 nguyên tố cùng nhau với mọi số tự nhiên n

 Đúng(0)
NV
4 tháng 1 2024

Gọi \(d=ƯC\left(2n+3;4n+8\right)\) với \(d\in N\)

Do \(2n+3\) luôn lẻ \(\Rightarrow d\) lẻ

\(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) \(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

Mà d lẻ \(\Rightarrow d=1\)

Vậy 2n+3 và 4n+8 nguyên tố cùng nhau với mọi \(n\in N\)

NV
3 tháng 1 2024

a,

Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)

Các câu sau em biến đổi tương tự

10 tháng 11 2016

a)Gọi ƯCLN(3n+5;2n+3)=d

=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d

=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d

=>6n+10-(6n+9) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(3n+5;2n+3)=1

Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau

b)Gọi ƯCLN(5n+2;7n+3)=a

=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a

=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a

=> 35n+15-(35n+14) chia hết cho a

=>1 chia hết cho a hay a=1

Do đó, ƯCLN(5n+2;7n+3)=1

Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau

2 tháng 12 2017

a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)

\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)

\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.

10 tháng 11 2016

a)Gọi UCLN(3n+5;2n+3)=d

Ta có:

[2(3n+5)]-[3(2n+3)] chia hết d

=>[6n+10]-[6n+9] chia hết d

=>1 chia hết d

=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau

b)Gọi UCLN(5n+2;7n+3)=d

Ta có:

[5(7n+3)]-[7(5n+2)] chia hết d

=>[35n+15]-[35n+14] chia hết d

=>1 chia hết d

=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau

10 tháng 12 2018

gọi UCLN(2n+3, 3n+5) là d 
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1) 
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2) 
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)

13 tháng 7 2018

Gọi d là ước chung của n + 1 và 3n + 4.

Ta có n + 1 ⋮ d nên 3( n+1) ⋮ d hay 3n + 3 ⋮ d

Lại có: 3n + 4 ⋮ d.

Suy ra (3n + 4) - (3n + 3) ⋮ d hay 1 ⋮ d

Do đó, d = 1.

Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau.