(2p-3)(q+1)=24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với $p,q$ nguyên tố thì $2p-3, q+1$ là các số nguyên dương.
Mà $(2p-3)(q+1)=24$ và $2p-3$ lẻ nên ta có các TH sau:
TH1: $2p-3=1, q+1=24$
$\Rightarrow p=2; q=23$ (tm)
TH2: $2p-3=3, q+1=8\Rightarrow p=3; q=7$ (tm)
2p - 1 = ( p - 1 ) . ( p + 1 )
p là số nguyên tố lớn hơn 3 => p không chia hết cho 2 ; 3
Ta có : p không chia hết cho 2
=> p - 1 và p + 1 là hai số chẵn liên tiếp => ( p - 1 ) . ( p + 1 ) chia hết cho 8 ( 1 )
Lại mặt khác ta có : p không chia hết cho 3
Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3
Tương tự ta có : Nếu p = 3k + 2 thì p + 1 = 3k + 3 chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3 (2)
Từ ( 1 ) và ( 2 ) => 2p - 1 chia hết cho 8 cho 3 mà ( 8; 3 ) = 1 => 2p - 1 chia hết cho .............
Mình nghĩ là đề bài thế này : Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P-1).(P+1) chia hết cho 24
BÀI GIẢI
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 và 3
Ta có : P không chia hết cho 2
=> P - 1 và P + 1 là 2 số chẵn liên tiếp => ( P - 1 )( P + 1 ) chia hết cho 8 ( 1 )'
Mặt khác : P không chia hết cho 3
Nếu P = 3k + 1 thì P - 1 chia hết cho 3k => ( P - 1 )( P + 1 ) chia hết cho 3 ( 2 )
Từ ( 1 ) và ( 2 ) => ( P - 1 )( P + 1 ) chia hết cho 8 và chia hết cho 3 mà ( 8 ; 3 ) = 1 => ( P - 1 )( P + 1 ) chia hết cho 24.
+) p = 2
=> 3p2+4= 15 không phải số nguyên tố => loại
+) p = 3
=> 2p2+3= 21 không phải SNT => loại
+) p = 5
=> 2p2-1= 49 không phải SNT => loại
+) p = 7
=> 2p2-1 = 97
2p2+3 = 101
3p2+4 = 151
=> thỏa mãn
+) p>7
Xét có dạng p = 7k+1, 7k+2, 7k+3, 7k-1, 7k-2, 7k-3 thì không thỏa mãn
Vậy p = 7 để ...
Chịu khó đọc, chẳng biết sao ko dùng đc phần kí tự
a: p>q
nên 3p>3q
=>3p+1>3q+1
c: p>q
nên -7p<-7q
=>-7p+4<-7q
đề bài là tính p và q đúng không?