Giải pt:
Căn (1 - căn (x2 - x ) = căn x - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\frac{1}{2}\)
Chắc pt là thế này:
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=3\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=3\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\)
\(\Leftrightarrow\sqrt{x-1}+1+\sqrt{x-1}-1=3\)
\(\Leftrightarrow\sqrt{x-1}=\frac{3}{2}\Rightarrow x=\frac{13}{4}\) (t/m)
- Nếu \(\frac{1}{2}\le x< 2\)
\(\Leftrightarrow\sqrt{x-1}+1+1-\sqrt{x-1}=3\Leftrightarrow2=3\) (vô lý)
Vậy pt có nghiệm duy nhất \(x=\frac{13}{4}\)
\(x-\sqrt{1-x}=\sqrt{x-2}+3\)
\(ĐK:\left\{{}\begin{matrix}1-x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy PT vô nghiệm
a: Sửa đề: PT x^2-2x-m-1=0
Khi m=2 thì Phương trình sẽ là:
x^2-2x-2-1=0
=>x^2-2x-3=0
=>(x-3)(x+1)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
b:
\(\text{Δ}=\left(-2\right)^2-4\left(-m-1\right)\)
\(=4+4m+4=4m+8\)
Để phương trình có hai nghiệm dương thì
\(\left\{{}\begin{matrix}4m+8>0\\2>0\\-m-1>0\end{matrix}\right.\Leftrightarrow-2< m< -1\)
\(\sqrt{x_1}+\sqrt{x_2}=2\)
=>\(x_1+x_2+2\sqrt{x_1x_2}=4\)
=>\(2+2\sqrt{-m-1}=4\)
=>\(2\sqrt{-m-1}=2\)
=>-m-1=1
=>-m=2
=>m=-2(loại)
1) thay m=1 vào pt: \(x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
2) theo định lí viets, ta có: x1+x2=2(m+1)
x1x2=2m
\(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=2\)
\(\Leftrightarrow2\left(m+1\right)+2\sqrt{2m}=2\)
tới đây bạn làm tiếp nhé
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\cdot\dfrac{\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\left(\sqrt{x}+1\right)^2\)
\(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x-1}\)
\(\Leftrightarrow1-\sqrt{x^2-x}=x-1\)
\(\Leftrightarrow2-x=\sqrt{x^2-x}\)
\(\Leftrightarrow x^2-4x+4=x^2-x\)
\(\Leftrightarrow-3x=-4\Leftrightarrow x=\frac{4}{3}\)