cho ba số tự nhiên đôi một phân biệt, đôi một nguyên tố cùng nhau và tổng 2 số bất kì chia hết cho số còn lại. Chứng tỏ tổng ba số tự nhiên dố chia hết cho tích của chúng và tìm ba số tự nhiên đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề bài: Phải là đôi một nguyên tố cùng nhau
+) Gọi 3 số tự nhiên cần tìm là : a, b , c
Theo bài ra ( a; b ) = 1; ( b ; c ) = 1; ( a; c ) = 1
và a + b \(⋮\)c ; a + c \(⋮\)b; b+c \(⋮\)a.
=> a + b + c \(⋮\)c ; a + c +b \(⋮\)b; b + c + a \(⋮\)a
=> a + b + c \(⋮\)BCNN ( a; b ; c )
Mặt khác a, b ,c đôi một nguyên tố cùng nhau => BCNN ( a; b ; c ) = abc
=> a + b + c \(⋮\)abc
+) Tìm 3 số đó.
Ta có: a + b + c \(⋮\)abc
=> a + b + c \(\ge\)abc
Không mất tính tổng quát : g/s: a > b > c
=> a + b + c < 3a
=> abc < 3a
=> bc < 3 mà a; b ; c là số tự nhiên
=> b = 2 và c = 1
Vì a + b \(⋮\)c => 3 \(⋮\)c => c = 3
Thử lại ta thấy 3 + 2 \(⋮\)1; 1 + 2 \(⋮\)3; 1 + 3 \(⋮\)2 và 1; 2; 3 là 3 số nguyên tố cùng nhau.
Vậy 3 số cần tìm là 1; 2; 3