Cho dãy (Un) thỏa mãn điều kiện: \(\left\{{}\begin{matrix}u_n< 1\\u_{n+1}.\left(1-u_n\right)>\dfrac{1}{2},\forall n\ge1\end{matrix}\right.\). Tính limUn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)
Thật vậy, dễ thấy \(u_1=2021>2020\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)
\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)
\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)
\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)
Do đó theo nguyên lý quy nạp ta có đpcm.
Lại có:
\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)
\(\Rightarrow\left(u_n\right)\) là dãy giảm
\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ
Đặt \(limu_n=L\)
\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)
Vậy \(limu_n=2020\)
Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)
Thật vậy, dễ thấy \(u_1=2021>2020\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)
\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)
\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)
\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)
Do đó theo nguyên lý quy nạp ta có đpcm.
Lại có:
\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)
\(\Rightarrow\left(u_n\right)\) là dãy giảm
\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ
Đặt \(limu_n=L\)
\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)
Vậy \(limu_n=2020\)
\(u_{n+1}=\dfrac{2u_n}{u_n+4}\Leftrightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{2}+\dfrac{2}{u_n}\)
Đặt \(v_n=\dfrac{1}{u_n}\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=2v_n+\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}+\dfrac{1}{2}=2\left(v_n+\dfrac{1}{2}\right)\end{matrix}\right.\)
Đặt \(v_n+\dfrac{1}{2}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}\\x_{n+1}=2x_n\end{matrix}\right.\)
\(\Rightarrow x_n\) là CSN với công bội 2 \(\Rightarrow x_n=\dfrac{3}{2}.2^{n-1}=3.2^{n-2}\)
\(\Leftrightarrow v_n=x_n-\dfrac{1}{2}=3.2^{n-2}-\dfrac{1}{2}\)
\(\Rightarrow u_n=\dfrac{1}{v_n}=\dfrac{1}{3.2^{n-2}-\dfrac{1}{2}}=\dfrac{2}{3.2^{n-1}-1}\)
\(u_n-u_{n+1}=u_n+\left(1-u_{n+1}\right)-1\ge2\sqrt{u_n\left(1-u_{n+1}\right)}-1>0\)
\(\Rightarrow u_n>u_{n+1}\Rightarrow\) dãy giảm
Dãy giảm và bị chặn dưới bởi 0 nên có giới hạn hữu hạn.
Gọi giới hạn đó là k
\(\Rightarrow k\left(1-k\right)\ge\dfrac{1}{4}\Rightarrow\left(2k-1\right)^2\le0\Rightarrow k=\dfrac{1}{2}\)
Vậy \(\lim\left(u_n\right)=\dfrac{1}{2}\)