K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

\(D=2!^2\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2015^2}\right)\)

tổng trong ngoặc nhỏ hơn 1 nên D nhỏ hơn 4.1=4<6

Vậy Đ<6

12 tháng 7 2016

Ta có: \(D=2\left(\frac{2}{1^2}+\frac{2}{3^2}+...+\frac{2}{2015^2}\right)< 2\left(2+\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)

\(=2\left(2+1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)=2\left(3-\frac{1}{2015}\right)=6-\frac{2}{2015}\)

Vậy D < 6.

12 tháng 7 2016

\(D=\frac{\left(2!\right)^2}{1^2}+\frac{\left(2!\right)^2}{3^2}+\frac{\left(2!\right)^2}{5^2}+\frac{\left(2!\right)^2}{7^2}+...+\frac{\left(2!\right)^2}{2015^2}\)

=>\(D=\frac{\left(1.2\right)^2}{1^2}+\frac{\left(1.2\right)^2}{3^2}+\frac{\left(1.2\right)^2}{5^2}+\frac{\left(1.2\right)^2}{7^2}+...+\frac{\left(1.2\right)^2}{2015^2}\)

=>\(D=\frac{2^2}{1^2}+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2015^2}\)

=>\(D=2\left(\frac{2}{1^2}+\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2015^2}\right)\)

Ta có: \(\frac{2}{1^2}+\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2015^2}< 2+\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\)

=>\(D=2\left(\frac{2}{1^2}+\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2015^2}\right)< 2\left(2+\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

Mà \(2\left(2+\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)\(=2\left(2+\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=2\left(2+1-\frac{1}{2015}\right)=2\left(3-\frac{1}{2015}\right)=6-\frac{6}{2016}< 6\)

=>\(D< 2\left(2+\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)< 6\)

=>D<6

13 tháng 4 2017

Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:

a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).

Thay vào điều kiện ta được:

 qa1b = qc1d

\(\Leftrightarrow\)a1b = c1d

\(\Rightarrow\)  d\(⋮\)a1

\(\Rightarrow\)d = d1a1

Thế ngược lại ta được: b = d1c1

Từ đây ta có:

A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n

= (a​1 n + c1 n)(q n + d1 n)

Vậy A là hợp số

13 tháng 4 2017

\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)

\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)

\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)

\(D< 4+2.\left(1-\frac{1}{2015}\right)\)

\(D< 6\)

mink chỉ làm được vậy thôi bạn ạ, sorry

3 tháng 6 2019

\(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)

\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax\left(x^6y^3\right)\)

\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax^7y^3\)

\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)

\(D=\frac{\left[3.\frac{6}{11}.8.\left(-2\right)\right]\left(x^8x^3x^{n-7}x^{7-n}\right)\left(y^8y\right)}{15.0,4.\left(x^3x^4\right)\left(y^2y^4\right)z^4a}\)

\(D=\frac{\frac{-188}{11}x^{24}y^9}{6x^7y^6z^4a}\)