K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\)
=> x = 5k ; y = 3k ; z = 2k
=> 2x = 10k ; 3y = 9k ; 4z = 8k
      Mà 2x + 3y + 4z = 54
=> 10k + 9k + 8k = 54
=> 27k = 54
=> k = 2
=> x = 10 ; y = 6 ; z = 4 

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)\(x-y+z=36\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)

\(\Rightarrow\)\(x=5.6=30\)
         \(y=6.6=36\)

         \(z=7.6=30\)

b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)\(x+y-z=32\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)

\(\Rightarrow\)\(x=-4.5=-20\)

         \(y=-4.-6=24\)

         \(z=-4.7=-28\)

c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.3=6\)
         \(z=2.2=4\)

d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.2=4\)

          \(z=3.2=6\)

Hok tốt!

@Kaito Kid

7 tháng 8 2016

\(\Rightarrow\frac{2x}{10}=\frac{3y}{9}=\frac{4z}{8}\)

Áp dụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{2x}{10}=\frac{3y}{9}=\frac{4z}{8}=\frac{2x+3y+4z}{10+9+8}=\frac{54}{27}=2\)

\(\Rightarrow\begin{cases}x=10\\y=6\\z=4\end{cases}\)

7 tháng 8 2016

Áp dụng tính chất của dãy tí số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2\cdot5+3\cdot3+4\cdot2}=\frac{54}{27}=2\)

=> \(\frac{x}{5}=2\Rightarrow x=10\)

     \(\frac{y}{3}=2\Rightarrow y=6\)

     \(\frac{z}{2}=2\Rightarrow z=4\)

23 tháng 8 2021

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC :

`(x)/(3)=(y)/(4)=(x+y)/(3+4)=(90)/(7)`

`->` $\begin{cases}x=\dfrac{90}{7}.3=\dfrac{30}{7} \\ y=\dfrac{90}{7}.4=\dfrac{360}{7} \end{cases}$

     

1)\(\dfrac{x}{5}=\dfrac{y}{3}\)        áp dụng...ta đc:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{20}{2}=10\)

x=50

y=30

9 tháng 11 2016

a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)

\(\frac{x}{2}=16=>x=32\)

\(\frac{y}{5}=16=>x=80\)

\(\frac{z}{4}=16=>z=64\)

Câu b) tương tự chỉ cần thay số vào nha bạn

25 tháng 1 2024

2x/10=3y/9=4z/8

Theo tính chất dãy tỉnh số bằng nhau ta có:

2x/10=3y/9=4z/8 => 2x+3y+4z/10+9+8 = 54/27 = 2

=> x = 5 x 2 =10

     y = 3 x 2 = 6

     z = 2 x 2 = 4

25 tháng 1 2024

Ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{2x}{10}=\dfrac{3y}{9}=\dfrac{4z}{8}\)

Áp dụng tính chấ dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{10}=\dfrac{3y}{9}=\dfrac{4z}{8}=\dfrac{2x+3y+4z}{10+9+8}=\dfrac{54}{27}=2\)

Do đó:

\(\dfrac{x}{5}=2\Rightarrow x=5.2=10\)

\(\dfrac{y}{3}=2\Rightarrow y=3.2=6\)

\(\dfrac{z}{2}=2\Rightarrow z=2.2=4\)

Vậy x = 10; y = 6; z = 4.

\(#NqHahh\)

30 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{10+9+8}=\frac{54}{27}=2\)

\(\Rightarrow x=2.5=10\)

\(y=2.3=6\)

\(z=2.2=4\)