Bài 7. Cho cân tại A. Kẻ phân giác AD (D thuộc BC).
a) Chứng minh DABD = DACD và
b) Trên tia đối của tia AB lấy điểm E sao cho AE = AB. Trên tia phân giác của góc CAE lấy điểm F sao cho AF = BD. Chứng minh AF//BC.
c) Chứng minh EF = AD
d) Chứng minh các điểm E, F, C thẳng hàng.
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Xét ΔBAC có \(\widehat{EAC}\) là góc ngoài tại đỉnh A
nên \(\widehat{EAC}=\widehat{ABC}+\widehat{ACB}=2\cdot\widehat{ABC}\)(1)
Ta có: AF là phân giác của góc EAC
=>\(\widehat{EAC}=2\cdot\widehat{EAF}=2\cdot\widehat{FAC}\)(2)
Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EAF}=\widehat{ACB}\)
Ta có: \(\widehat{EAF}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên AF//BC
c: Xét ΔEAF và ΔABD có
EA=AB
\(\widehat{EAF}=\widehat{ABD}\)
AF=BD
Do đó: ΔEAF=ΔABD
=>EF=AD
d: Ta có: ΔABD=ΔACD
=>BD=CD và \(\widehat{ADB}=\widehat{ADC}\)
Ta có: \(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=90^0\)
=>AD\(\perp\)BC
Ta có: AF//BC
D\(\in\)BC
Do đó: AF//CD
Ta có: AF=BD
BD=CD
Do đó: AF=CD
Xét tứ giác ADCF có
AF//CD
AF=CD
Do đó: ADCF là hình bình hành
Hình bình hành ADCF có \(\widehat{ADC}=90^0\)
nên ADCF là hình chữ nhật
=>\(\widehat{AFC}=90^0\)
Ta có: ΔEAF=ΔABD
=>\(\widehat{EFA}=\widehat{ADB}=90^0\)
Ta có: \(\widehat{EFA}+\widehat{CFA}=\widehat{EFC}\)
=>\(\widehat{EFC}=90^0+90^0=180^0\)
=>E,F,C thẳng hàng