K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

Xét ΔCAB có FE//AB

nên \(\dfrac{CF}{FA}=\dfrac{CE}{EB}\)

=>\(\dfrac{30}{EB}=\dfrac{20}{40}=\dfrac{1}{2}\)

=>\(EB=30\cdot2=60\left(m\right)\)

Xét ΔCAB có FE//AB

nên FE/AB=CF/CA

=>6/AB=4/10=2/5

=>AB=15(m)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

Theo đề bài, ba điểm C, E, B thẳng hàng, ba điểm C, F, A thẳng hàng và AB // EF, áp dụng định lí Thalès, ta có:

\(\dfrac{{EC}}{{BE}} = \dfrac{{CF}}{{AF}}\) hay \(\dfrac{{30}}{{BE}} = \dfrac{{20}}{{40}}\)

Suy ra \(BE = \dfrac{{30.40}}{{20}} = 60\) (m).

Vậy khoảng cách giữa hai vị trí B và E bằng 60 m.

20 tháng 12 2023

Ta có:

MN = MH + HN = 30 + 30 = 60 (m)

MP = MK + KP = 50 + 50 = 100

Lại có:

MH/MN = 30/60 = 1/2

MK/MP = 50/100 = 1/2

⇒ MH/MN = MK/MP = 1/2

⇒ HK // MN

⇒ HK/NP = MH/MN = 1/2

⇒ HK = NP : 2

= 80 : 2

= 40 (m)

27 tháng 11 2023

a: Sửa đề: \(\dfrac{KB}{KE}=\dfrac{KA}{KD}\)

\(\dfrac{KB}{KE}=\dfrac{7.2}{20.25}=\dfrac{16}{45}\)

\(\dfrac{KA}{KD}=\dfrac{6.4}{18}=\dfrac{16}{45}\)

Do đó: \(\dfrac{KB}{KE}=\dfrac{KA}{KD}\)

b: Xét ΔKDE có \(\dfrac{KB}{KE}=\dfrac{KA}{KD}\)

nên AB//DE

c: Xét ΔKDE có AB//DE

nên \(\dfrac{AB}{DE}=\dfrac{KB}{KE}\)

=>\(\dfrac{32}{DE}=\dfrac{16}{45}=\dfrac{32}{90}\)

=>DE=90(m)

18 tháng 12 2023

loading...  loading...  loading...  loading...  

17 tháng 12 2021

giải thik dùm mk luôn ạ

17 tháng 12 2021

A

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Xét tam giác ABC, ta có: \(\widehat {BAC} = 59,{95^o};\;\widehat {BCA} = 82,{15^o}.\)

\( \Rightarrow \widehat {ABC} = {180^o} - \left( {59,95 + 82,{{15}^o}} \right) = 37,{9^o}\)

Áp dụng định lí sin trong tam giác BAC ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\)

\( \Rightarrow AB = \sin C.\frac{{AC}}{{\sin B}} = \sin 82,{15^o}.\frac{{25}}{{\sin {37,9^o}}} \approx 40\)

Vậy khoảng cách từ vị trí A đến vị trí B là 40 m.

21 tháng 11 2023

Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{ABC}+59^0+82^0=180^0\)

=>\(\widehat{ABC}=39^0\)

Xét ΔABC có \(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

=>\(\dfrac{25}{sin39}=\dfrac{AB}{sin82}\)

=>\(AB=25\cdot\dfrac{sin82}{sin39}\simeq39,34\left(m\right)\)