K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

giải tri tiết nha

17 tháng 12 2023

1/5+45/9+1/2+1/3+1/2+1/9+1/15+1/99= ai trả lời đc đưa số tài khoản mik cho 100k

25 tháng 5 2022

 

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{128}-\dfrac{1}{256}\right)\)

\(A=1-\dfrac{1}{256}\)

\(A=\dfrac{255}{256}\)

 

 

25 tháng 5 2022

eo tự nhiên viết kh đc :v

15 tháng 10 2021
Đáp án𝑠=15376
15 tháng 10 2021

Cả lời giải bn

4 tháng 1 2022

\(\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{128}\\ =\dfrac{63}{128}\)

\(7m^28dm^2=7,08m^2\)

18 tháng 8 2023

     C =           \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)

  2\(\times\)C =   1 +  \(\dfrac{1}{2}\)  + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\) 

\(\times\) C - C =   1 -  \(\dfrac{1}{128}\)

       C       = \(\dfrac{127}{128}\)

 

1 tháng 1 2018

Sửa đề

\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}}+\dfrac{5}{8}\)

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}\right)}{\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}}+\dfrac{5}{8}\)

\(=\dfrac{1}{2}\cdot3+\dfrac{5}{8}=\dfrac{3}{2}+\dfrac{5}{8}=\dfrac{17}{8}\)

1 tháng 1 2018

A= \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13})}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{\dfrac{4}{4}-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13})}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{4.(\dfrac{1}{4})-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{4^3}-\dfrac{1}{16^2})}{4.(\dfrac{1}{4})-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(-\dfrac{1}{4^2}-\dfrac{1}{16^2})}{4-\dfrac{1}{4^3}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(-\dfrac{1}{16^2})}{4.-\dfrac{1}{4^2}}+\dfrac{5}{8}\)

16 tháng 2 2022

\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)

=>\(B=\dfrac{32+16+6+2+1}{64}\)

=>\(B=\dfrac{63}{64}\)

16 tháng 2 2022

\(\dfrac{63}{64}\)

22 tháng 7 2018

Q=\(\dfrac{1}{2}+\left(\dfrac{3}{4}+\dfrac{7}{8}\right)+\left(\dfrac{15}{16}+\dfrac{31}{32}\right)+\left(\dfrac{63}{64}+\dfrac{127}{128}\right)-6\)

Q=\(\dfrac{1}{2}+\dfrac{13}{8}+\dfrac{61}{32}+\dfrac{253}{128}\)\(-6\)

Q= \(\dfrac{64}{128}+\dfrac{208}{128}+\dfrac{244}{128}+\dfrac{253}{128}-6\)

Q= \(\dfrac{769}{128}-6\)

Q=\(\dfrac{769}{128}-\dfrac{768}{128}\)

Q= \(\dfrac{1}{128}\)

21 tháng 7 2017

Ta có: \(VT=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(4VT=\dfrac{1}{2^2:2^2}+\dfrac{1}{4^2:2^2}+\dfrac{1}{6^2:2^2}+...+\dfrac{1}{100^2:2^2}\)

\(4VT=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

Lại có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(\Rightarrow4VT-1< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)(*)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\) (**)

Từ (*) và (**) \(\Rightarrow4VT< 2-\dfrac{1}{50}\)

\(\Rightarrow VT< \dfrac{1}{2}-\dfrac{1}{200}< VP\Rightarrow\) đpcm

b) Ta có: \(2VT=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)

\(2VT+VT=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

\(3VT=1-\dfrac{1}{64}< 1\)

\(\Rightarrow VT< \dfrac{1}{3}\) (đpcm)

22 tháng 7 2017

Thanks bạn nhìu nha!!!vuiyeu

9 tháng 5 2022

a) A = 3(1/4 + 1/8 + 1/16 + ... + 1/256)

= 3(1/2 - 1/4 + 1/4 - 1/8 +... + 1/128 - 1/1256)

= 3(1/2 - 1/256)

=3x127/256 = 381/256

b) Số lẻ thứ n có dạng 2n - 1 
Ví dụ số đầu tiên n = 1 khi đó số lẻ là 1, số thứ 100 là 2x100  -1 = 199;
Tổng của 100 số lẻ liên tiếp có thể viết dưới dạng
A = 1 + 3 + 5+ ... + (2n-1);
Ta thấy A là tổng của n số hạng đầu tiên của cấp số cộng với số hạng đầu là 1, công sai 2, số hạng thứ n là 2n−1.
Do đó A =  n.(1+2n−1)/2  =  nxn
Cụ thể n = 100 do đó A = 100x100 = 10000

(Nếu thấy khó hiểu có thể dùng cách đơn giản cộng số đầu với cuối thành các tổng tương ứng rồi gom nhóm cộng lại)

Thắc mắc có thể liên hệ thêm

9 tháng 5 2022

ko ghi rõ cách làm đâu cho  kết quả trên máy tính là:a.\(\dfrac{381}{256}\)

b.thì ko biết