Bài 2: Số đo độ dài hai cạnh góc vuông của một tam giác vuông là nghiệm của phương trình bậc hai \(\left(m-2\right)x^2-2\left(m+1\right)x+m+7=0.\)Định m để số đo đường cao ứng với cạnh huyền của tam giác đã cho là \(\frac{2}{\sqrt{5}}\)
Bài 3: Cho phương trình \(x^2-2\left(m+1\right)x+2m=0\)
1. Chứng minh phương trình có hai nghiệm phân biệt
2. Tìm giá trị nhỏ nhất của biểu thức: \(A=\frac{x_1^2+x_2^2}{x_1\left(1-x_2\right)+x_2\left(1-x_1\right)}\)
3. \(\left|x_1-x_2\right|=4\)
4. \(x_1^3+x_1x_2^2=x_2^3+x_2x_1^2\)