Câu1:đường thẳng y=(m^2+1)x+m có hệ số góc bằng 1 khi và chỉ khi nào? Câu2:đường thẳng d:y=x- 2m cắt trục hoành tại điểm có hoành độ bằng 4 khi nào Câu3:cho tam giác ABC vuông cân tại A,AB=10cm.Tính bán kính đường tròn ngoại tiếp tam giác ABC Câu4:Cho đường tròn (O;3cm), đường thẳng d cắt đường tròn tại 2 điểm phân biệt,h là khoảng cách từ O đến d.Khẳng định nào đúng?Vì sao? A.3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=0 vào (d), ta được:
\(1\left(3-2m\right)+m-1=0\)
=>3-2m+m-1=0
=>2-m=0
=>m=2
b: Thay x=0 và y=-4 vào (d), ta được:
\(0\cdot\left(3-2m\right)+m-1=-4\)
=>m-1=-4
=>m=-4+1=-3
c: Thay x=3 và y=3 vào (d), ta được:
\(3\left(3-2m\right)+m-1=3\)
=>9-6m+m-1=3
=>8-5m=3
=>5m=8-3=5
=>m=1
a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .
\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)
\(\Rightarrow a=-\dfrac{1}{2}\)
b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)
\(\Leftrightarrow3x+2=2mx-x+8\)
\(\Leftrightarrow3x+2-2mx+m-8=0\)
\(\Leftrightarrow x\left(3-2m\right)=6-m\)
- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
Vậy ...
a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên
Thay x=6 và y=0 vào hàm số y=ax+3, ta được:
\(6a+3=0\)
\(\Leftrightarrow6a=-3\)
hay \(a=-\dfrac{1}{2}\)
Vậy: \(a=-\dfrac{1}{2}\)
b)
Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
hay \(m\ne\dfrac{1}{2}\)(1)
Để (d) cắt (d') thì \(2m-1\ne3\)
\(\Leftrightarrow2m\ne4\)
hay \(m\ne2\)(2)
Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)
2
a)
d đi qua A (1;2), B(2;5)
=> Ta có hệ phương trình: \(\left\{{}\begin{matrix}\left(m-1\right).1+n=2\\\left(m-1\right).2+n=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+n=3\\2m+n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\n=-1\end{matrix}\right.\)
b)
d có hệ số góc a = 3 => d: y = 3x + n
=> m -1 = 3 <=> m = 4
d cắt Ox tại x = -2, y = 0 \(\Leftrightarrow0=3.\left(-2\right)+n\) => n = 6
c)
d trùng d' \(\Rightarrow\left\{{}\begin{matrix}m-1=5\\n=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=6\\n=-3\end{matrix}\right.\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
b) d 1 cắt trục hoành tại điểm có hoành độ bằng – 3 khi:
0 = -3m + 2m - 1 ⇔ -m - 1 = 0 ⇔ m = -1
Vậy với m = -1 thì d 1 cắt trục hoành tại điểm có hoành độ bằng – 3
Câu 1: Để đường thẳng y=(m2+1)x+m có hệ số góc bằng 1 thì
\(m^2+1=1\)
=>\(m^2=0\)
=>m=0
Câu 2: Thay x=4 và y=0 vào y=x-2m, ta được:
4-2m=0
=>2m=4
=>m=2
Câu 3:
ΔABC vuông cân tại A
=>AB=AC=10cm và \(BC^2=AB^2+AC^2\)
=>\(BC^2=10^2+10^2=200\)
=>\(BC=10\sqrt{2}\left(cm\right)\)
Ta có: ΔABC vuông cân tại A
=>\(R=\dfrac{BC}{2}=5\sqrt{2}\left(cm\right)\)