cho tam giác abc vuông tại a có i là trung điểm của bc qua i vẽ đường thẳng d vuông góc với bc qua c vẽ đường thẳng vuông góc với ac cắt d tại e chứng minh ae vuông góc với bi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của 2 tia EC và BI là F, nối FA.
Xét \(\Delta\)BAI và \(\Delta\)FCI có: AI=CI; ^BAI = ^FCI; ^AIB = ^CIF => \(\Delta\)BAI=\(\Delta\)FCI (g.c.g)
=> AB=CF (2 cạnh tương ứng).
Ta có: AB vuông AC; CE vuông AC => AB // CE hay AB // CF
Xét tứ giác ABCF: AB // CF; AB=CF => Tứ giác ABCF là hình bình hành
=> AF // BC. Mà EI vuông BC nên EI vuông AF.
Xét \(\Delta\)AEF: AC vuông EF; EI vuông AF; điểm I thuộc AC => I là trực tâm \(\Delta\)AEF
=> FI vuông AE. Lại có: Tứ giác ABCF là hình bình hành; I là trung điểm đường chéo AC
=> 3 điểm F;I;B thẳng hàng. Vậy khi FI vuông AE thì BI cũng vuông AE (đpcm).
Gọi D là giao điểm của AB và IE
\(\Delta\)BDC có hai đường cao DI và CA cắt nhau tại I nên I là trực tâm của \(\Delta\)BDC
=> BI vuông góc CD (1)
Xét \(\Delta\)IAD và \(\Delta\)ICE có:
^IAD = ^ICE ( = 900)
IA = IC
^AID = ^CIE (đối đỉnh)
Do đó \(\Delta\)IAD = \(\Delta\)ICE (g.c.g)
=> ID = IE (hai cạnh tương ứng)
Xét \(\Delta\)AIE và \(\Delta\)CID có:
AI = CI (gt)
^AIE = ^CID (đối đỉnh)
DI = EI (cmt)
Do đó \(\Delta\)AIE = \(\Delta\)CID (c.g.c)
=> ^IAE = ^ICD (hai góc tương ứng)
Mà hai góc này ở vị trí slt nên AE //CD (2)
Từ (1) và (2) suy ra BI vuông góc AE (đpcm)
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBMN có
NA là trung tuýen
NI=2/3NA
=>I là trọng tâm
=>MI đi qua trung điểm của BN
Hình như hiễn thị cô ạ, thêm (<AC.Từ B vẽ đường thẳng vuông góc với AB,từ C kẻ đường thẳng vuông góc với AC, hai đường này cắt nhau tại I. Gọi E là giao điểm của AI và BC.)
Thái sơn năm nay chắc lên lớp 8 rồi nên tớ làm theo cách lớp 8 nhé!
a) Xét tứ giác ABCI
\(\Rightarrow\widehat{A}+\widehat{ABI}+\widehat{ACI}+\widehat{BIC}=360^o\left(dl\right)\)
\(\Leftrightarrow90^o+90^o+90^o+\widehat{BIC}=360^o\)
\(\Leftrightarrow\widehat{BIC}=360^o-\left(90^o+90^o+90^o\right)=90^o\)
Ta dễ dàng chứng minh được AC//BI ( \(\widehat{BAC}+\widehat{ABI}=90^o+90^o=180^o\) Nằm ở vị trí trong cùng phía bù nhau)
Ta dễ dàng chứng minh được AB//CI ( \(\widehat{ACI}+\widehat{BIC}=90^o+90^o=180^o\)Nằm ở vị trí trong cùng phía bù nhau)
Xét \(\Delta ABC\)và \(\Delta BIC\)có
\(\widehat{CBI}=\widehat{ACB}\left(AC//BI\right)\)
BC là cạnh chung
\(\widehat{ICB}=\widehat{CBA}\left(AB//CI\right)\)
=> \(\Delta ABC\)=\(\Delta BIC\)(G-C-G)
=> AC = BI
=> AB = CI
Xét tứ giác ABCI
Có \(\widehat{BAC}=\widehat{ABI}=\widehat{ACI}=\widehat{BIC}=90^o\)
VÀ AC = BI ; AB = CI
=> Tứ giác ABCI là hình chữ nhật
=>Hai đường chéo BC và AI cắt nhau tại E
=> E là trung điểm của BC và AI
\(\Rightarrow AE=\frac{1}{2}BC\left(DPCM\right)\)
Câu b,c tối mình sẽ suy nghĩ sau
bn xem lại đề thử nha, làm sao mà AE vuông góc vs BI đc
bạn vẽ hình chưa??? vẽ chuẩn xác là sẽ vuông
còn mình cần cách chứng minh kia