1) Cho hình vuông ABCD cạnh a, M là trung điểm BC. Tính sinAMD
2) cho tam giác ABC nhọn, đường cao BD,CE. CM: diện tích ADE= diện tích ABC . \(\cos^2A\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
c: góc A=90-30=60 độ
ΔADE đồng dạng với ΔABC
=>S ADE/S ABC=(AD/AB)^2=1/4
=>S ABC=120cm2
Gọi AH và AK lần lượt là 2 đường cao của \(\Delta ADE\)và \(\Delta ABC\)
Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^o\)nên tứ giác BCDE nội tiếp
\(\Rightarrow\widehat{AED}=\widehat{ACB}\)( cùng bù với \(\widehat{BED}\))
\(\Rightarrow\Delta ADE\approx\Delta ABC\left(g.g\right)\) ( nếu chưa học tứ giác nội tiếp thì có thể xét các tam giác đồng dạng để c.m nha )
\(\Rightarrow\frac{AD}{AB}=\frac{DE}{BC}=\frac{AH}{AK}\) ( vì tỉ số đồng dạng bằng tỉ số đường cao )
a) Ta có : \(\frac{S_{ADE}}{S_{ABC}}=\frac{\frac{DE.AH}{2}}{\frac{BC.AK}{2}}=\frac{AD}{AB}.\frac{AH}{AK}=\left(\frac{AD}{AB}\right)^2\)
Mà \(\cos A=\frac{AD}{AB}\Rightarrow\cos^2=\left(\frac{AD}{AB}\right)^2\)\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\cos^2A\)
\(\Rightarrow S_{ADE}=S_{ABC}.\cos^2A\)
b) \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}.\left(1-\cos^2A\right)=S_{ABC}.\sin^2A\)( vì \(\cos^2A+\sin^2A=1\))
Từ đề bài, ta suy ra tỉ lệ các diện tích là:
SBAE = SACE = SMAC = SMBC
Độ dài AB là: 54 : (12 : 2) = 9 (cm)
Xét 2 tam giác MAC và ACE: Do đều có diện tích như nhau (cả 2 đều chiếm \(\dfrac{1}{2}\) diện tích ABC), chung tam giác AIC.
⇒ SAMI = SEIC
Nối B tới I, ta có được tam giác MBC được chia thành 3 phần bằng nhau ⇒ Mỗi phần sẽ có diện tích là: 27 : 3 = 9 (cm2)
Diện tích tam giác AIC là: 54 - 27 - 9 = 18 (cm2)
Độ đường cao IK là: 18 : (12 : 2) = 3 (cm)
Đáp số: a) 9cm
b) SAMI = SEIC
c) 3cm
a, Chiều cao thứ nhất của tam giác ABC là AC= 40 cm
Chiều cao thứ hai của tam giác ABC là AB= 30 cm
Gọi chiều cao thứ ba của tam giác ABC là AI
Diện tích tam giác ABC là:
(40x30):2=600 ( cm 2)
Chiều cao AI là:
600x2:50=24 ( cm)
b,Nối B Với E
Diện tích tam giác BEC là
50 x 6 : 2=150 ( cm 2)
Diện tích tam giác BEA là
600-150=450 ( cm 2)
Độ dài đoạn thẳng DE là
450x2:30=30 ( cm)
Gọi AK là chiều cao của tam giác ADE
=>Độ dài chiều cao AK là:
24-4=20 ( cm)
Diện tích tam giác ADE là:
(20x30):2=300 ( cm 2)