K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

Bài 2

loading...

Ta có:

∠N + ∠DMN + ∠MDN = 180⁰ (tổng các góc trong ∆MDN)

⇒ ∠NMD = 180⁰ - (∠N + ∠MDN) (1)

∠P + ∠MDP + ∠PMD = 180⁰ (tổng các góc trong ∆MDP)

⇒ ∠PMD = 180⁰ - (∠MDP + ∠P) (2)

Do MD là tia phân giác của ∠NMP (gt)

⇒ ∠NMD = ∠PMD (3)

Từ (1), (2) và (3) ⇒ ∠DMP + ∠P = ∠N + ∠DMN

⇒ ∠DMP - ∠DMN = ∠N - ∠P

15 tháng 12 2023

Bài 1

loading... a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆ABM và ∆ACM có:

AM là cạnh chung

AB = AC (gt)

MB = MC (cmt)

⇒ ∆ABM = ∆ACM (c-c-c)

b) Do ∆ABM = ∆ACM (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

Mà BD ⊥ BC (gt)

⇒ BD // AM

c) Do ∆ABM = ∆ACM (cmt)

⇒ ∠BAM = ∠CAM (hai góc tương ứng)

Do BD // AM (cmt)

⇒ ∠ADB = ∠CAM (đồng vị)

∠ABD = ∠BAM (so le trong)

Mà ∠BAM = ∠CAM (cmt)

⇒ ∠ABD = ∠ADB

23 tháng 12 2020

đề sai rồi

23 tháng 12 2020

đề sai rồi

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có

AM chung

góc DAM=góc EAM

=>ΔADM=ΔAEM

=>MD=ME

=>ΔMED cân tại M

c: Xét ΔCAB có

M là trung điểm của CB

MF//AB

=>F là trung điểm của AC

26 tháng 6 2021

Bạn tự vẽ hình nhé hình này rất dễ thôi :v

a)Xét tam giác cân ABC có:AM là trung tuyến

`=>` AM là đường cao

`=>AM bot BC`

Xét tam giác ABM và tam giác ACM có:

`AM` chung

`hat{AMB}=hat{AMC}=90^o(CMT)`

`BM=MC`(do m là trung điểm)

`=>Delta ABM=Delta ACM(cgc)`

`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:

`BM=CM`(M là trung điểm)

`hat{ABC}=hat{ACB}`(do tam giác ABC cân)

`=>Delta BHM=Delta CKM`(ch-gn)

`=>BH=CK`