K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 12 2023

Lời giải:

$n^3+3n+1\vdots n+1$

$\Rightarrow (n^3+1)+3n\vdots n+1$

$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$

$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn) 

$\Rightarrow n\in \left\{0; 2\right\}$

21 tháng 11 2021

mình xin lỗi mình đánh máy sai câu hỏi như này

 A) n+7 chia hết cho n+2 ( với n khác 2 )

 B) 3n+1 chia hết cho 2n+3  

19 tháng 12 2020

\(3n-3+5⋮n-1\)

\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)

có 3(n-1) chia hết cho n-1

\(\Rightarrow5⋮n-1\)

=> n-1 thuộc ước của 5

tức là:

n-1=5

n-1=-5

n-1=1

n-1=-1

19 tháng 12 2020

đến đấy mà không làm được thì a chịu đấy =)))))

trả lời...................................

đúng nhé..............................

hk tốt.........................................

8 tháng 1 2019

1)Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4 

                   = 3 ( n - 1 ) + 7 

Vì ( n - 1 ) chia hết cho ( n -1 ) =>3 ( n - 1 ) chia hết cho ( n -1 ) 

Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 ) thì 7 chia hết cho n - 1 

Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 } 

Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK ) 

Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK ) 

Vậy n = 8 hoặc n = 2 là giá trị cần tìm 

6 tháng 3 2020

\(3n+1⋮11-n\)

\(=>3n+1⋮-\left(n-11\right)\)

\(=>3n-33+34⋮n-11\)

\(=>34⋮n-11\)

\(=>n-11\inƯ\left(34\right)\)

Nên ta có bảng sau :

Tự lập bảng nhé bạn :P

19 tháng 12 2018

\(3n+2⋮n-1\Leftrightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;5\right\}\Leftrightarrow n\in\left\{2;6\right\}\)

28 tháng 10 2020

a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)

Vậy \(n\in\left\{3;4;5;8\right\}\)

28 tháng 10 2020

b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
                                            hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:

\(n-1\)\(1\)\(2\)\(4\)
\(n\)\(2\)\(3\)\(5\)


Vậy \(n\in\left\{2;3;5\right\}\)

28 tháng 12 2022

ta có n+1⋮n+1

mà n+3⋮n+1

\Rightarrow n+3-\left(n+1\right)⋮n+1

\Rightarrow n+3-n-2  ⋮n+1

\Rightarrow  2  ⋮n+1

\Rightarrow n+1\in\text{Ư}_{\left(2\right)}=\text{ }\left\{1;2\right\}

nếu n+1=1\Rightarrow n=0 ( thỏa mãn )

nếu n+1=2\Rightarrow n+1 ( thỏa mãn )

vậy n\in\text{ }\left\{0;1\right\}

b)Ta có:

4n+ 3⋮⋮ 2n+ 1.

Ta có: 2n+ 1⋮⋮ 2n+ 1.

=> 2( 2n+ 1)⋮⋮ 2n+ 1.

=> 4n+ 2⋮⋮ 2n+ 1.

Mà 4n+ 3⋮⋮ 2n+ 1.

=>( 4n+ 3)-( 4n+ 2)⋮⋮ 2n+ 1.

=> 4n+ 3- 4n- 2⋮⋮ 2n+ 1.

=> 1⋮⋮ 2n+ 1.

=> n= 1.

Vậy n= 1.

 Tick cho mình nha!

28 tháng 12 2022

Ta có: 3n+2=3n-3+2+3
Vì (n-1) nên 3(n-1) ⋮ (n-1)
Do đó(3n+2) ⋮ (n-1) khi 5 ⋮ (n-1)
=>(n-1)ϵ Ư(5)={-1;-5;1;5}
=>n ϵ {2;6} vì n-1=1=>n=2
                      n-1=5=>n=6
Vậy n={2;6}

câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html

câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html