K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

c: Sửa đề: D đối xứng với H qua M

Xét ΔAHK có

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHK cân tại A

Ta có: ΔAHK cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAK

=>\(\widehat{HAK}=2\cdot\widehat{HAC}\)

Xét ΔAHD có

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHD cân tại A

Ta có: ΔAHD cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

Ta có: \(\widehat{HAK}+\widehat{HAD}=\widehat{DAK}\)

=>\(\widehat{DAK}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)

=>\(\widehat{DAK}=2\left(\widehat{HAC}+\widehat{HAB}\right)=2\cdot\widehat{BAC}=2\cdot90^0=180^0\)

=>D,A,K thẳng hàng

Sửa đề: \(BD^2+CK^2+2\cdot BH\cdot HC\)

Xét ΔBHD có

BM là đường cao

BM là đường trung tuyến

Do đó: ΔBHD cân tại B

=>BH=BD

Xét ΔCKH có

CN là đường cao

CN là đường trung tuyến

Do đó: ΔCKH cân tại C

=>CK=CH

\(BD^2+CK^2+2\cdot BH\cdot HC\)

\(=BH^2+HC^2+2\cdot BH\cdot HC\)

\(=\left(BH+HC\right)^2=BC^2\)

18 tháng 12 2016

 a) Ta có: E và M đối xứng với nhau qua D 
=> DE = DM ; ME vuông góc AB 
Ta có BD = DA ( D là trun điểm AB ) 
mà ME vuông góc AB ( cmt ) 
=> AB là trung trực của ME hay E và M đối xứng nhau qua D 
b) Xét Tam giác ABC có: 
M là trung điểm BC ( gt ) 
D là trung điểm AB ( gt) 
=> DM là đường trung bình tam giác ABC 
=> DM // AC; DM = 1/2AC 
mà E thuộc DM 
nên EM // AC 
Xét tứ giác AEMC có: 
EM // AC ( cmt) 
EM = AC ( cùng = 2DM ) 
=> Tứ giác AEMC là hình bình hành( tứ giác có 2 cạnh đối vừa // vừa = nhau là hình bình hành) 
c) Xét tứ giác AEBM có: 
ED = DM ( gt ) 
DB = AD ( gt ) 
=> Tứ giác AEBM là hình bình hành ( D/h 5 ) 
mà AB vuông góc EM 
=> hbh AEBM là hình thoi ( D/h 3 ) 
d) Ta có : AM = 1/2BC ( trung tuyến ứng với cạnh huyền) 
=> AM = 1/2 . BC = 1/2. 5 = 2,5 (cm) 
Chu vi hình thoi AEBM: 
2,5 . 4 =10 (cm) 

18 tháng 10 2021

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

nên AMHN là hình chữ nhật

a: Xét tứ giác AMHK có

góc AMH=góc AKH=góc KAM=90 độ

=>AMHK là hình chữ nhật

=>AH=MK

b: Xét ΔAHD có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHD cân tại A

=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AH=AE và AC là phân giác của góc HAE(2)

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

c: Xét ΔAHB và ΔADB có

AH=AD

góc HAB=góc DAB

AB chung

=>ΔAHB=ΔADB

=>góc ADB=90 dộ

=>BD vuông góc DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

góc HAC=góc EAC

AC chung

=>ΔAHC=ΔAEC

=>goc AEC=90 độ

=>CE vuông góc ED(4)

Từ (3), (4) suy ra BD//CE

28 tháng 2 2019

A B C H M N P I

Cm: a) Xét t/giác ABH và t/giác ACH

có AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

 AH : chung

=> t/giác ABH = t/giác ACH (ch - cgn)

=> góc BAH = góc HAC (hai góc tương ứng)         (Đpcm)

=> BH = CH (hai cạnh tương ứng)

=> H là trung điểm của BC

b) Xét t/giác AMH và t/giác ANH

có góc AMH = góc ANH = 900 (gt)

        AH : chung

  góc MAH = góc NAH (Cmt)

=> t/giác AMH = t/giác ANH (ch - gn)

=> AM = AN (hai cạnh tương ứng)

=> T/giác AMN là t/giác cân tại A

c) Gọi I là giao điểm của BC và MP

Ta có: T/giác AMH = t/giác ANH (Cmt)

=> MH = HN (hai cạnh tương ứng)

Mà HN = PH (gt)

=> MH = PH 

Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)

              góc AHN + góc NHC = 900 (phụ nhau)

Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)

=> góc MHB = góc NHC 

Mà góc NHC = góc BHP 

=> góc MHB = góc BHP

Xét t/giác MHI và t/giác PHI

có MH = PH (cmt)

   góc MHI = góc IHP (cmt)

  HI : chung

=> t/giác MHI = t/giác PHI (c.g.c)

=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)

=> góc MIH = góc HIP (hai góc tương ứng)

Mà góc MIH + góc HIP = 1800

=> 2.góc MIH = 1800

=> góc MIH = 1800 : 2

=> góc MIH = 900

=> HI \(\perp\)MP (2)

Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP

hay BC là đường trung trực của đoạc thẳng MP (Đpcm)

d) tự lm

28 tháng 2 2019

Cm: a) Xét t/giác ABH và t/giác ACH

có AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

 AH : chung

=> t/giác ABH = t/giác ACH (ch - cgn)

=> góc BAH = góc HAC (hai góc tương ứng)         (Đpcm)

=> BH = CH (hai cạnh tương ứng)

=> H là trung điểm của BC

b) Xét t/giác AMH và t/giác ANH

có góc AMH = góc ANH = 900 (gt)

        AH : chung

  góc MAH = góc NAH (Cmt)

=> t/giác AMH = t/giác ANH (ch - gn)

=> AM = AN (hai cạnh tương ứng)

=> T/giác AMN là t/giác cân tại A

c) Gọi I là giao điểm của BC và MP

Ta có: T/giác AMH = t/giác ANH (Cmt)

=> MH = HN (hai cạnh tương ứng)

Mà HN = PH (gt)

=> MH = PH 

Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)

              góc AHN + góc NHC = 900 (phụ nhau)

Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)

=> góc MHB = góc NHC 

Mà góc NHC = góc BHP 

=> góc MHB = góc BHP

Xét t/giác MHI và t/giác PHI

có MH = PH (cmt)

   góc MHI = góc IHP (cmt)

  HI : chung

=> t/giác MHI = t/giác PHI (c.g.c)

=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)

=> góc MIH = góc HIP (hai góc tương ứng)

Mà góc MIH + góc HIP = 1800

=> 2.góc MIH = 1800

=> góc MIH = 1800 : 2

=> góc MIH = 900

=> HI MP (2)

Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP

hay BC là đường trung trực của đoạc thẳng MP (Đpcm)