nhau tại O. Tính số đo góc BOC . Cho tam giác ABC có 060A, các tia phân giác của góc B, góc C cắt
nhau tại O. Tính số đo góc BOC .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem ở đường link này:
Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath
Hình vẽ a chèn không rõ được không, chắc giống của e thôi.
https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP
Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)
còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)
Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)
\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!
Xét tam giác BOC có:
B1 + C1+ 135o = 180o
B1 +C1 = 45o
Ta có:
B= B1+ B2
C= C1+ C2
Và B +C +A = 180o
(B1+ B2)+ (C1+ C2) +A = 180o
2*B1 + 2*C1 +A = 180o
2* (B1+ C1) +A= 180o
2* 45o +A= 180o
90o +A= 180o
A= 90o
Ta có: B= 2C
và B +C +A = 180o
2C +C +90o =180o
3C = 90o
C = 30o
=> B= 2C = 2 * 30o= 60o
Mà tam giác ABC = tam giác DEF
=> A=D= 90o
E= B= 60o
C= F= 30o