Tìm số nguyên tố `x` để |P| + P = 0 biết \(P=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\) \(\left(x\ge0;x\ne4;x\ne9\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
b) \(M=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=1-\dfrac{5}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(\sqrt{x}\ge0\forall x\)
\(\Rightarrow\sqrt{x}\in\left\{3\right\}\Rightarrow x=9\left(tm\right)\)
a: \(Q=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(C=\left(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}+4}\)
\(=\dfrac{-3}{2\sqrt{x}+4}\)
Để \(C< -\dfrac{1}{3}\) thì \(\dfrac{-3}{2\sqrt{x}+4}+\dfrac{1}{3}< 0\)
\(\Leftrightarrow-9+2\sqrt{x}+4< 0\)
\(\Leftrightarrow\sqrt{x}< \dfrac{5}{2}\)
hay \(0\le x< \dfrac{25}{4}\)
\(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
Để A là số nguyên thì \(\sqrt{x}+1=1\)
hay x=0
Lời giải:
\(A=\frac{\sqrt{x}+1+\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}-1)=\frac{2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}-1)=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\frac{2(\sqrt{x}+1)-1}{\sqrt{x}+1}=2-\frac{1}{\sqrt{x}+1}\)
Để $A$ nguyên thì $\frac{1}{\sqrt{x}+1}$ nguyên.
Với $x$ nguyên thì điều này xảy ra khi mà $\sqrt{x}+1$ là ước của $1$
$\Rightarrow \sqrt{x}+1=1$ (do $\sqrt{x}+1$ dương)
$\Rightarrow x=0$
a: \(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}+3}=-\dfrac{6}{\sqrt{x}+3}\)
b: P>=-1/2
=>P+1/2>=0
=>\(\dfrac{-6}{\sqrt{x}+3}+\dfrac{1}{2}>=0\)
=>\(\dfrac{-12+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}>=0\)
=>căn x-9>=0
=>x>=81
c: căn x+3>=3
=>6/căn x+3<=6/3=2
=>-6/căn x+3>=-2
Dấu = xảy ra khi x=0
\(a,A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\\ b,A< 0\Leftrightarrow\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\left(1>0\right)\\ \Leftrightarrow x< 1\\ c,A\in Z\Leftrightarrow1⋮\sqrt{x}-1\\ \Leftrightarrow\sqrt{x}-1\inƯ\left(1\right)\left\{-1;1\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\)
a) \(A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\)
b) \(A=\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Kết hợp đk:
\(\Rightarrow0\le x< 1\)
c) \(A=\dfrac{1}{\sqrt{x}-1}\in Z\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0;2\right\}\)
\(\Rightarrow x\in\left\{0;4\right\}\)
\(a,A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{x-6\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+3}\)
\(P\in Z\Rightarrow\sqrt{x}+3=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
Mà \(\sqrt{x}+3\ge3;\forall x\ge0\)
\(\Rightarrow\sqrt{x}+3=3\)
\(\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
|P|+P=0
=>|P|=-P
=>P<=0
=>\(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}< =0\)
=>\(\sqrt{x}-3< =0\)
=>\(\sqrt{x}< =3\)
=>0<=x<=9
kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< =x< 9\\x< >4\end{matrix}\right.\)
mà x là số nguyên tố
nên \(x\in\left\{2;3;5;7\right\}\)