K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Mình cảm ơn.

10 tháng 8 2017

\(5^x+5^{x-1}+5^{x-2}=155\)

\(\Rightarrow5^x:1+5^x:5+5^x:25=155\)

\(\Rightarrow5^x:\left(1+5+25\right)=155\)

\(\Rightarrow5^x:31=155\)

\(\Rightarrow5^x=4805\)

2)

\(x^3=x\)

\(\Rightarrow x^3-x=0\)

\(\Rightarrow x^2\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2=0\Rightarrow x=0\\x-1=0\Rightarrow x=1\end{matrix}\right.\)

11 tháng 8 2017

thanks.

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

13 tháng 4 2019

\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)

Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)

\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)

Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)

Vậy A>B

1/5^199<1/3^300

23 tháng 8 2023

1) \(5^{199}< 5^{200}=25^{100}\)

\(3^{300}=27^{100}>25^{100}\)

\(\Rightarrow3^{300}>5^{199}\)

\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)

2)  a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)

\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)

\(\Rightarrow107^{50}< 73^{75}\)

b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)

23 tháng 8 2023

Giúp mình với

3 tháng 3 2016

 3^300 = (3^3)^100 = 27^100 

5^199 < 5^200 mà 5^200 = 25^100 

25^100<27^100 => 3^300>5^200>5^199 

=> 1/5^199 > 1/3^300

25 tháng 9 2017

3^300=(3^3)^100=27^100 

10 tháng 4 2022

A>B do A>4 cònB<4

13 tháng 7 2023

ngáo đá 😂

30 tháng 4 2017

A > B

Đúng 100%

Đúng 100%

Đúng 100%

30 tháng 4 2017

Bạn giải lần lượt hộ mình với