Bài 4. (1 điểm) Cho hình thang ${ABCD}$ với $AB$ // $CD$ có hai đường chéo ${AC}$, ${BD}$ cắt nhau tại ${O}$ và đường thẳng qua ${O}$ song song với đáy cắt các cạnh bên tại ${AD}$ và ${BC}$ theo thứ tự tại ${M}$ và ${N}$. Chứng minh ${OM=ON}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ΔDAB, ta có: OM // AB (gt)
(Hệ quả định lí Ta-lét) (1)
Trong ΔCAB, ta có: ON // AB (gt)
(Hệ quả định lí Ta-lét) (2)
Trong ΔBCD, ta có: ON // CD (gt)
Suy ra: (định lí Ta-lét) (3)
Từ (1), (2) và (3) suy ra:
Vậy: OM = ON
Bạn tự vẽ hình nhé
Xét \(\Delta ACD\) có OE // CD(gt)
=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét \(\Delta BCD\) có OF // CD (gt)
=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)
Mặt khác AB // CD nên \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF
Tam giác ABD có OE//AB
=>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1)
Tam giác ABC có OF//AB
=>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2)
Tam giác ABO có CD//AB
=>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét)
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3)
Từ (1) (2) và (3)
=> OE/AB = OF/AB
=> OE = OF (đpcm.)
Bài 1:
Áp dụng định lý Talet cho $EO\parallel DC$:
$\frac{OE}{DC}=\frac{AO}{AC}(1)$
Áp dụng định lý Talet cho $OF\parallel DC$:
$\frac{OF}{DC}=\frac{OB}{BD}(2)$
Áp dụng định lý Talet cho $AB\parallel CD$:
$\frac{OA}{OC}=\frac{OB}{OD}\Leftrightarrow \frac{OA}{OA+OC}=\frac{OB}{OB+OD}\Leftrightarrow \frac{OA}{AC}=\frac{OB}{BD}(3)$
Từ $(1);(2);(3)\Rightarrow \frac{OE}{DC}=\frac{OF}{DC}$
$\Rightarrow OE=OF$ (đpcm)
Xét tam giác ABC ta có:
ON // AB (gt)
=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)
Xét tam giác ABD ta có:
OM // AB (gt)
=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)
Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)
Vậy OM = ON.
Xét Δ���ΔADC có ��MO // ��DC nên theo định lí Thalès ta có
����=����DCOM=ACOA. (1)
Xét Δ���ΔBCD có ��ON // ��CD nên theo định lí Thalès ta có
����=����CDON=BCBN. (2)
Xét Δ ���Δ CAB có ��ON // ��CD nên theo định lí Thalès ta có
����=����BCBN=ACAO. (3)
Từ (1)(1), (2)(2), (3)(3) suy ra ����=����=����=����DCOM=ACOA=BCBN=CDON.
Suy ra ��=��OM=ON.
Xét Δ���ΔADC có ��MO // ��DC nên theo định lí Thalès ta có
����=����DCOM=ACOA. (1)
Xét Δ���ΔBCD có ��ON // ��CD nên theo định lí Thalès ta có
����=����CDON=BCBN. (2)
Xét Δ ���Δ CAB có ��ON // ��CD nên theo định lí Thalès ta có
����=����BCBN=ACAO. (3)
Từ (1)(1), (2)(2), (3)(3) suy ra ����=����=����=����DCOM=ACOA=BCBN=CDON.
Suy ra ��=��OM=ON.