tìm x
a)2x-5\(⋮\)x-2
b)\(x^2\)+ 1 là bội của x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2 thì Thay x=2 vào phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\), ta được:
\(\left(2\cdot2+1\right)^2\cdot\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)
\(\Leftrightarrow25\cdot\left(2k+18\right)-20=40\)
\(\Leftrightarrow25\left(2k+18\right)=60\)
\(\Leftrightarrow2k+18=\dfrac{12}{5}\)
\(\Leftrightarrow2k=-\dfrac{78}{5}\)
hay \(k=\dfrac{-39}{5}\)
Vậy: \(k=\dfrac{-39}{5}\)
1) \(B\left(24\right)=\left\{24;48;72;96\right\}\)
\(B\left(39\right)=\left\{39;78\right\}\)
2) a) \(x+20⋮x+2\)
\(\Rightarrow x+20-\left(x+2\right)⋮x+2\)
\(\Rightarrow x+20-x-2⋮x+2\)
\(\Rightarrow18⋮x+2\)
\(\Rightarrow x+2\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;4;7;16\right\}\)
\(\Rightarrow x\in\left\{0;1;4;7;16\right\}\left(x\in N\right)\)
b) \(x+5⋮4x+69\)
\(\Rightarrow4\left(x+5\right)-\left(4x+69\right)⋮4x+69\)
\(\Rightarrow4x+20-4x-69⋮4x+69\)
\(\Rightarrow-49⋮4x+69\)
\(\Rightarrow4x+69\in\left\{1;7;49\right\}\)
\(\Rightarrow x\in\left\{-17;-\dfrac{31}{2};-20\right\}\)
\(\Rightarrow x\in\varnothing\left(x\in N\right)\)
c) \(10x+23⋮2x+1\)
\(\Rightarrow10x+23-5\left(2x+1\right)⋮2x+1\)
\(\Rightarrow10x+23-10x-5⋮2x+1\)
\(\Rightarrow18⋮2x+1\)
\(\Rightarrow2x+1\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow x\in\left\{0;\dfrac{1}{2};1;\dfrac{5}{2};4;\dfrac{17}{2}\right\}\)
\(\Rightarrow x\in\left\{0;1;4\right\}\left(x\in N\right)\)
a) x+ 4 là bội của x+1
x + 1 + 3 là bội của x + 1
=> 3 là bội của x => x thuộc{+-1;+-3}
mình chỉ biết làm a và b thôi :b
a) \(\frac{x+4}{x+1}=\frac{x+1+3}{x+1}=\frac{x+1}{x+1}=\frac{3}{x+1}=1+\frac{3}{x+1}\)
=> x+1 \(\in\) Ư(3) = {-1,-3,1,3}
Ta có bảng :
x+1 | -1 | -3 | 1 | 3 |
x | -2 | -4 | 0 | 2 |
Vậy ...
b) \(\frac{x+20}{x+4}=\frac{x+4+16}{x+4}=\frac{x+4}{x+4}+\frac{16}{x+4}=1+\frac{16}{x+4}\)
=> x+4 \(\in\) Ư(16) = {-1,-2,-4,-8,-16,1,2,4,8,16}
Ta có bảng :
x+4 | -1 | -2 | -4 | -8 | -16 | 1 | 2 | 4 | 8 | 16 |
x | -5 | -6 | -8 | -12 | -20 | -3 | -2 | 0 | 4 | 12 |
Vậy ...
\(\Rightarrow2x+1⋮x-3\\ \Rightarrow2x+1⋮2\left(x-3\right)\\ \Rightarrow2x+1⋮2x-6\\ \Rightarrow\left(2x+1\right)-\left(2x-6\right)⋮x-3\\ \Rightarrow7⋮x-3\\ \Rightarrow x-3\inƯ\left(7\right)=\left\{\pm7;\pm1\right\}\)
\(\Rightarrow x=\left\{10;-4;4;2\right\}\)
a) x + 20 chia hết cho x + 2
=> x + 2 + 18 chia hết cho x + 2
=> 18 chia hết cho x + 2
Bạn liệt kê ra nhé
a)\(\frac{2x-5}{x-2}=\frac{2x-4-1}{x-2}=\frac{2\left(x-2\right)-1}{x-2}=2-\frac{1}{x-2}\)
Để 2x - 5 \(⋮\) x-2 \(\Rightarrow2-\frac{1}{x-2}\) là 1 số nguyên \(\frac{\Rightarrow1}{x-2}\in Z\)
\(\Rightarrow1\) \(⋮\left(x-2\right)\) \(\Rightarrow x-2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow x=\left\{1;3\right\}\)
b)\(\frac{x^2+1}{x+1}=x+\frac{1-x}{x+1}\)
Để x\(^2\) +1 là bội của x+1 \(\Rightarrow x+\frac{1-x}{x+1}\in Z\Rightarrow\frac{1-x}{x+1}\in Z\)