Cho 3 số a,b,c dương và \(\frac{a}{1+a}+\frac{b}{1+b}+\)\(\frac{c}{1+c}\le1\)
Chứng minh \(abc\le\frac{1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình ghi nhầm cái số 1 nhỏ nha
mn nếu giải thì bỏ cái số đó đi
+ ta có a,b,c thuộc [0,1]
=> b^2 <= b và c^3 <= c
=> a + b^2 + c^3 - ab - bc - ca <= a + b + c - (ab + bc + ca)
+ mặt # a , b , c thuộc [0,1]
=> (1 - a)(1 - b)(1 - c) >=0
<> 1- a - b - c + ab + bc + ca - abc >=0
<> a + b + c - (ab + bc + ca) <= 1 - abc
=> a + b + c - (ab + bc + ca) <=1 (abc >= 0)
\(a\le1;b\le1\Rightarrow a-1\le0;b-1\le0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\frac{1}{ab+1}\le\frac{1}{a+b}\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Chứng minh tương tự ta cũng có :
\(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\)
Cộng vế với vế ta được :
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)
\(\Leftrightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\) (đpcm)