cho 2 đa thức
f(x)=3x2-x+1
g(x)=2x2-3x-7
tìm nghiệm của f(x)-g(x)
giúp mình , mai mình nộp bài oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
a) cho f(x )=0
\(=>2x^2-x=0=>x\left(2x-1\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)cho \(f\left(2\right)+g\left(2\right)=0\)
\(=>2.2^2-2+m.2^2+2m+1=0\)
\(8-2+4m+2m+1=0\)
\(6+2m\left(2+1\right)+1=0\)
\(6+6m=-1\)
\(6m=-7=>m=-\dfrac{7}{6}\)
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
a: \(f\left(x\right)+g\left(x\right)=2x^3-2x^2+4x\)
b: \(f\left(x\right)-g\left(x\right)=-2x^2+2x+2\)
Ta có : f(x) - g(x) = (3x2 - x + 1) - (2x2 - 3x - 7)
=> f(x) - g(x) = 3x2 - x + 1 - 2x2 + 3x + 7
=> f(x) - g(x) = x2 + 2x + 1 + 7
=> f(x) - g(x) = (x + 1)2 + 7
Mà ; (x + 1)2 \(\ge0\forall x\)
Nên : f(x) - g(x) = (x + 1)2 + 7 \(\ge7\forall x\)
Suy ra : f(x) - g(x) = (x + 1)2 + 7 \(>0\forall x\)
Vậy đa thức f(x) - g(x) vô nhiệm