Cho biểu thức 𝐴 = (𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑛 + 5) + 2 với n ϵ N. Chứng minh rằng A không là bình phương của bất kì số tự nhiên nào.
Gíup với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow n-2+5⋮n-2\\ \Rightarrow n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-3;1;3;7\right\}\\ b,\Rightarrow2\left(n-4\right)+13⋮n-4\\ \Rightarrow n-4\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\\ \Rightarrow n\in\left\{-9;3;5;17\right\}\\ c,\Rightarrow6n-9⋮3n+1\\ \Rightarrow2\left(3n+1\right)-12⋮3n+1\\ \Rightarrow3n+1\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\\ \Rightarrow n\in\left\{-1;0;1\right\}\left(n\in Z\right)\\ d,\Rightarrow n^2+2n-n-2+3⋮n+2\\ \Rightarrow n\left(n+2\right)-\left(n+2\right)+3⋮n+2\\ \Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
a: \(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
+ Với n = 1 ta có:
Vế trái = 1. 4= 4.
Vế phải = 1.(1+ 1)2 = 4.
=> Vế trái = Vế phải. Vậy (1) đúng với n = 1.
+ Giả sử (1) đúng với n=k; k ∈ N*; tức là ta có:
1.4+2.7+⋅⋅⋅+k(3k+1)=k(k+1)2 (2)
Ta chứng minh nó cũng đúng với n= k+1. Có nghĩa ta phải chứng minh:
1.4+2.7+⋅⋅⋅+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)2
+ Thật vậy do 1.4+ 2.7+ ...+ k. ( 3k+ 1) = k( k+1)2 nên
1.4+2.7+⋯+k( 3k+1)+( k+1).(3k+4)=k(k+1)2+(k+1)(3k+4)
= k( k2+2k+ 1)+ 3k2 + 4k+ 3k+ 4
= k3 + 2k2 + k+3k2 + 7k+ 4 = k3 + 5k2 + 8k+ 4 = (k + 1).(k + 2)2
Do đó (1) đúng với mọi số nguyên dương n.
Giá trị của số tự nhiên n trong hằng đẳng thức 𝑎^𝑛 − 𝑏^𝑛 bằng:
A. 0.
B. 1.
C. 2.
D. 3.