A=1/3x5 + 1/5x7 +1/7x9 +.....+1/97x99
Giups con với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/3×5 + 1/5×7 + 1/7×9 + ... + 1/97×99
2A = 2/3×5 + 2/5×7 + 2/7×9 + ... + 2/97×99
2A = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99
2A = 1/3 - 1/99
2A = 32/99
A = 32/99 : 2
A = 32/99 × 1/2 = 16/99
quá dễ :
A=3/3x5+3/5x7+3/7x9+...+3/97x99
A=3/2.(1/3-1/5+1/5-1/3+...+1/97-1/99)
A=3/2.(1/3-1/99)
A=3/2.32/99
A= 16/33
B=1x3+3x5+5x7+7x9+...+95x97+97x99
= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)
= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2
= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)
= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)
Đặt : A = 12+32 +52+...+952+ 972
C =1+3 +5+...+95+97
tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B
A = \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + \(\dfrac{2}{7\times9}\)
A = \(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\) + \(\dfrac{1}{7}-\dfrac{1}{9}\)
A = \(\dfrac{1}{1}-\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
B = \(\dfrac{1}{3}+\dfrac{1}{15}\) + \(\dfrac{1}{35}+\) \(\dfrac{1}{63}\) + ... + \(\dfrac{1}{195}\)
B = \(\dfrac{1}{1\times3}\) + \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) + ...+ \(\dfrac{1}{13\times15}\)
B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + ..+ \(\dfrac{1}{13}\) - \(\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}-\dfrac{1}{5}\) + ...+\(\dfrac{1}{13}-\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}-\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x \(\dfrac{14}{15}\)
B = \(\dfrac{7}{15}\)
Ta có \(6B=1\times3\times6+3\times5\times6+...+97\times99\times6\)
\(=1\times3\times\left(5+1\right)+3\times5\times\left(7-1\right)+5\times7\times\left(9-3\right)+...+97\times99\times\left(101-95\right)\)
\(=1\times3\times5+1.3+3\times5\times7-3\times5\times1+...-97\times99\times95\)
\(=97\times99\times101+3\)
\(\Rightarrow B=\frac{97\times99\times101+3}{6}=161651\)
2/3x5 + 2/5x7 + 2/7x9 + ......+ 2/97x99 = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99
= 1/3 - 1/99 = 96/3.99 = 32/99
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
=\(\frac{1}{3}-\frac{1}{99}\)
=\(\frac{32}{99}\)
=1/5-1/7 + 1/7 - 1/9 + 1/9 - 1/11+....+1/97-1/99
=1/5 -1/99
=....
A = \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) + \(\dfrac{1}{7\times9}\) + ... + \(\dfrac{1}{97\times99}\)
A = \(\dfrac{1}{2}\) x (\(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + \(\dfrac{2}{7\times9}\) + ... + \(\dfrac{2}{97\times99}\))
A = \(\dfrac{1}{2}\) x (\(\dfrac{1}{3}-\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}-\dfrac{1}{9}\) + ... + \(\dfrac{1}{97}\) - \(\dfrac{1}{99}\))
A = \(\dfrac{1}{2}\) x ( \(\dfrac{1}{3}\) - \(\dfrac{1}{99}\))
A = \(\dfrac{1}{2}\times\left(\dfrac{33}{99}-\dfrac{1}{99}\right)\)
A = \(\dfrac{1}{2}\times\dfrac{32}{99}\)
A = \(\dfrac{16}{99}\)