K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2022

tham khảo

undefined

13 tháng 4 2022

refẻr\undefined

NV
13 tháng 4 2022

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC=d\left(C;\left(SAB\right)\right)\)

Gọi D là trung điểm AB, theo tính chất trọng tâm: \(GD=\dfrac{1}{3}CD\)

\(\Rightarrow d\left(G;\left(SAB\right)\right)=\dfrac{1}{3}d\left(C;\left(SAB\right)\right)=\dfrac{1}{3}BC=\dfrac{1}{3}AB=\dfrac{a}{3}\)

NV
13 tháng 4 2022

undefined

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là trung tuyến

nên AH là phân giác

c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có

AH chung

góc EAH=góc FAH

=>ΔAEH=ΔAFH

=>AE=AF
=>ΔAEF cân tại A

mà AI là phân giác

nên AI là trung tuyến

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

=>AD//HE và AD=HE; AE//HD và AE=HD

AE=HD

A\(\in\)EF

Do đó: HD//AF

AE=HD

AE=AF

Do đó: HD=AF

Xét tứ giác AHDF có

AF//DH

AF=DH

Do đó: AHDF là hình bình hành

c:

AC và AF là hai tia đối nhau

mà E\(\in\)AC

nên AE và AF là hai tia đối nhau

=>A nằm giữa E và F

mà AE=AF

nên A là trung điểm của EF

Xét tứ giác EBFM có

A là trung điểm chung của EF và BM

nên EBFM là hình bình hành

Hình bình hành EBFM có EF\(\perp\)BM

nên EBFM là hình thoi

3 tháng 12 2023

Bạn ơi có hình vẽ k ạ

9 tháng 8 2015

Ta co BM2 + CM2 = 2ME2 + 2MF= 2 ( ME2 +MF2)

ma ME2 +MF2 = EF(  dinh ly pitago trong tam giac vuong EMF )

nen BM2+CM2 = 2 EF2

lai co EF = AM ( AEMF la hcn)

-> BM2 +CM2 = 2AM2

 

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

21 tháng 3 2022

C