K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

b: Ta có: ΔABH vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=6^2-3,6^2=23,04\)

=>\(HA=\sqrt{23,04}=4,8\left(cm\right)\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

=>\(AE\cdot6=4,8^2=23,04\)

=>\(AE=\dfrac{23.04}{6}=3,84\left(cm\right)\)

AEHF là hình chữ nhật

=>AE=HF

mà AE=3,84cm

nên HF=3,84cm

loading...

22 tháng 12 2023

Các bạn vẽ giúp mik hình với nha

13 tháng 10 2022

a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)

b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)

=>HF=2HE

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

a/ Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

$\Rightarrow AH=EF$

b/ $HF=AE$ (do $AEHF$ là hcn) 

Xét tam giác $AEH$ và $AHB$ có:

$\widehat{A}$ chung

$\widehat{AEH}=\widehat{AHB}=90^0$

$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)

$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$

$\Rightarrow AE=\frac{AH^2}{AB}=\frac{AB^2-BH^2}{AB}=\frac{6^2-3,6^2}{6}=3,84$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Hình vẽ:

24 tháng 6 2019

Tứ giác AEHD là hình chữ nhật vì:  A ^ = E ^ = D ^ = 90 o nên DE = AH.

Xét ABC vuông tại A có: A H 2 = HB.HC = 9.16 = 144 => AH = 12

Nên DE = 12cm

Đáp án cần chọn là: A

22 tháng 10 2019

Tứ giác ARHD là hình chữ nhật vì:  A ^ = E ^ = D ^ = 90 ∘ nên DE = AH.

Xét ∆ ABC vuông tại A có A H 2 = HB.HC = 4.9 = 36 ⇔ AH = 6

Nên DE = 6cm

Đáp án cần chọn là : D

15 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB

Suy ra: \(\widehat{ADE}=\widehat{ACB}\)

23 tháng 10 2021

a, Áp dụng HTL: \(BC=\dfrac{AB^2}{BH}=18\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=9\sqrt{3}\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot9\sqrt{3}}{18}=\dfrac{9\sqrt{3}}{2}\left(cm\right)\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AE=AH^2\\AC\cdot AF=AH^2\end{matrix}\right.\Rightarrow AB\cdot AE=AC\cdot AF\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Mà góc A chung nên \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)

Do đó \(\widehat{AEF}=\widehat{ACB}\)