Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3 + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005Bài toán 7. Cho a là số gồm 2n...
Đọc tiếp
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
\(x^3+y^3+z^3\)
\(=\left(x+y+z\right).\left(x+y+z\right).\left(x+y+z\right)\)
Mà x + y + z chia hết cho 6
\(\Rightarrow x^3+y^3+z^3⋮6\)
k mik nha!
Xét hiệu :
\(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)\)
\(=\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)\)
\(=x\left(x^2-1\right)+y\left(y^2-1\right)+z\left(z^2-1\right)\)
\(=\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)\)
Vì các tích \(\left(x-1\right)x\left(x+1\right);\left(y-1\right)y\left(y+1\right);\left(z-1\right)z\left(z+1\right)\) là tích của 3 số TN liên tiếp
Nên \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮6\\\left(y-1\right)y\left(y+1\right)⋮6\\\left(z-1\right)z\left(z+1\right)⋮6\end{cases}}\)\(\Rightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)⋮6\)
Hay \(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)⋮6\)
Mà \(\left(x+y+z\right)⋮6\)(gt) \(\Rightarrow x^3+y^3+z^3⋮6\)(đpcm)