cho tam giác ABC vuông tại A, trên AB,BC,BA lần lượt lấy K,M,N sao cho tam giác KMN vuông cân tại K, kẻ MH vuông góc với AB, tìm min của diện tích tam giác KMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dễ thấy tam giác KMN đồng dạng tam giác ABC (g.g)
\(\Rightarrow\frac{S_{KMN}}{S_{ABC}}=\left(\frac{MN}{BC}\right)^2\)
Vì \(S_{ABC}\) và \(MN\) không đổi nên \(S_{KMN}\) đạt giá trị nhỏ nhất khi MN đạt giá trị nhỏ nhất. Khi đó MN sẽ trùng với đường trung bình PQ trên hình vẽ . Vậy \(minS_{KMN}=\frac{1}{4}S_{ABC}\Leftrightarrow MN=PQ\)
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH
Gọi AD,BE,CF lần lượt là đường cao cảu tam giác ABC,mà H là trực tâm của tam giác ABC nên AD,BE,CF đồng quy tại H
Ta có:\(\widehat{HAM}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{KBH}\)
Ta lại có:\(\widehat{AHM}=90^0-\widehat{KHD}=\widehat{BKH}\)
Xét \(\Delta AHM\&\Delta BKH\)có:
\(\hept{\begin{cases}\widehat{HAM}=\widehat{KBH}\\\widehat{AHM}=\widehat{BKH}\end{cases}}\)
\(\Rightarrow\Delta HAM\)đồng dạng với \(\Delta BKH\left(g.g\right)\)(mk ko bt kí hiệu đồng dạng trong olm)
\(\Rightarrow\frac{AH}{BK}=\frac{HM}{HK}\)
\(CMTT:\Rightarrow\frac{AH}{KC}=\frac{HN}{HK}\)
Mà BK=KC\(\Rightarrow\frac{HM}{HK}=\frac{HN}{HK}\Rightarrow HM=HN\)
Suy ra HK là đường trung tuyến của tam giác NMK,mà HK cũng là đường cao của tam giác NMK
Suy ra tam giác NMK cân tại K(đpcm)
a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có
BM=CN
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔNKC
b: Ta có: ΔMHB=ΔNKC
nên HB=KC
Ta có: AH+HB=AB
AK+KC=AC
mà BA=AC
và HB=KC
nên AH=AK
c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có
AH=AK
HM=KN
Do đó: ΔAHM=ΔAKN
Suy ra: AM=AN