Cho tam giác ABC nhọn, nội tiếp đường tròn tâm O. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng qua C và song song với AB tại D.
a. Chmr: BC2=AB.CD
b. Gọi G là trọng tâm tam giác ABC, E là giao điểm của CG và BD. Tiếp tuyến tại C của đường tròn tâm (O) cắt BG tại F. Chmr: ^EAG=^FAG
a: CD//AB
=>\(\widehat{CDB}=\widehat{ABC}\)
Xét (O) có
\(\widehat{DBC}\) là góc tạo bởi dây cung BC và tiếp tuyến BD
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{DBC}=\widehat{BAC}\)
Xét ΔDBC và ΔCAB có
\(\widehat{DBC}=\widehat{CAB}\)
\(\widehat{DCB}=\widehat{ABC}\)
Do đó: ΔDBC đồng dạng với ΔCAB
=>\(\dfrac{DC}{CB}=\dfrac{BC}{AB}\)
=>\(BC^2=AB\cdot DC\)
còn câu B bạn