a) Chứng minh
\(\frac{1}{\left(n+1\right)\sqrt{n+n\sqrt{n+1}}}\)\(=\)\(\frac{1}{\sqrt{n}}\)\(-\)\(\frac{1}{\sqrt{n+1}}\)( n\(\in\)z )
b) Tính
A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)\(+\)\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B=\(\frac{1}{2\sqrt{1+1\sqrt{2}}}\)\(+\)\(\frac{1}{3\sqrt{2+2\sqrt{3}}}\)\(+\)\(\frac{1}{4\sqrt{3+3\sqrt{4}}}\)\(+\).... \(\frac{1}{100\sqrt{99+99\sqrt{100}}}\)