K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)

----------------------------------------

\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)

------------------------------------------

\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
17 tháng 4 2021

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)

NV
17 tháng 4 2021

2.

\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)

\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)

\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)

\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\) 

\(\Rightarrow...\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

26 tháng 12 2021

a: \(=\dfrac{x-z}{2}\)

b: \(=\dfrac{3x}{4y^3}\)

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<

19 tháng 2 2019

a) \(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\end{matrix}\right.\) \(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{x+y}{xy}=\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5\left(x+y\right)=4xy\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5\left(x+y\right)=4\left(5y-5x\right)\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x+5y=20y-20x\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x+5y-20y+20x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\-15y+25x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\-5\left(3y-5x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\3y-5x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x=3y\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-3y=xy\\5x=3y\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2y=xy\\5x=3y\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=\dfrac{10}{3}\end{matrix}\right.\)

19 tháng 2 2019

b) \(\left\{{}\begin{matrix}\dfrac{1}{2x-3y}+\dfrac{5}{3x+y}=\dfrac{5}{8}\\\dfrac{2}{2x-3y}-\dfrac{5}{3x+y}=\dfrac{-3}{8}\end{matrix}\right.\)

Đặt \(\dfrac{1}{2x-3y}=a;\dfrac{1}{3x+y}=b\)

=> hpt <=> \(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\2a-5b=\dfrac{-3}{8}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\2a-5b+a+5b=\dfrac{-3}{8}+\dfrac{5}{8}=0,25\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\3a=0,25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\a=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=\dfrac{1}{12}\\b=\dfrac{13}{120}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x-3y}=\dfrac{1}{12}\\\dfrac{1}{3x+y}=\dfrac{13}{120}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=12\\3x+y=\dfrac{120}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{516}{143}\\y=-\dfrac{228}{143}\end{matrix}\right.\)

a: =>-3/2+x-7=5-1/3x+4/15

=>4/3x=413/30

hay x=413/40

b: \(\Leftrightarrow5-\dfrac{3}{2}x=-\dfrac{22}{3}\cdot\dfrac{-11}{8}=\dfrac{121}{12}\)

=>3/2x=-61/12

hay x=-61/18

c: (3x+2)2+|3x+2y|=0

=>3x+2=0 và 3x=-2y

=>x=-2/3 và -2y=-2

=>(x,y)=(-2/3;1)

1 tháng 10 2023

\(\left(3-x\right)^3=-\dfrac{27}{64}\)

\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)

\(=>3-x=\dfrac{-3}{4}\)

\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)

\(x=\dfrac{15}{4}\)

________

\(\left(x-5\right)^3=\dfrac{1}{-27}\)

\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)

\(=>x-5=\dfrac{-1}{3}\)

\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)

\(x=\dfrac{14}{3}\)

_____________

\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)

\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)

\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)

\(x=\dfrac{3}{2}+\dfrac{1}{2}\)

\(x=2\)

________

\(\left(2x-1\right)^2=\dfrac{1}{4}\)            

\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\)           hoặc              \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(=>2x-1=\dfrac{1}{2}\)                                       \(2x-1=\dfrac{-1}{2}\)

\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\)                               \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)

\(2x=\dfrac{3}{2}\)                                                     \(2x=\dfrac{1}{2}\)

\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\)                                     \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)

\(x=\dfrac{3}{4}\)                                                       \(x=\dfrac{1}{4}\)

____________

\(\left(2-3x\right)^2=\dfrac{9}{4}\)

\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\)                hoặc                  \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)

\(=>2-3x=\dfrac{3}{2}\)                                               \(2-3x=\dfrac{-3}{2}\)

\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\)                                      \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)

\(3x=\dfrac{1}{2}\)                                                            \(3x=\dfrac{7}{2}\)

\(x=\dfrac{1}{2}.\dfrac{1}{3}\)                                                          \(x=\dfrac{7}{2}.\dfrac{1}{3}\)

\(x=\dfrac{1}{6}\)                                                               \(x=\dfrac{7}{6}\)

______________

\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này

1 tháng 10 2023

(3-x)3=(-\(\dfrac{3}{4}\))3

3-x=-\(\dfrac{3}{4}\)

  x=3-(-\(\dfrac{3}{4}\))

  x=\(\dfrac{15}{4}\)