K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

Bạn ơi, bạn kiểm tra lại đề giúp mình nha. Mình không biết điểm E ở đâu để biểu diễn lên hình vẽ. Hic

23 tháng 3 2020

Uk đúng rồi đấy

15 tháng 11 2021

a, Vì \(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\) nên AEMF là hcn

b, Vì M là trung điểm BC, MF//AB(⊥AC) nên F là trung điểm AC

Mà F là trung điểm MN nên AMCN là hbh

c, Để AMCN là hcn thì \(\widehat{AMC}=90^0\) hay AM là đường cao tam giác ABC

Mà AM là trung tuyến nên để AMCN là hcn thì ABC vuông cân tại A

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90

=> BEMF là hình chữ nhật (dh)

b, MF _|_ BA

BC _|_ AB

=> MF // BC 

M là trung điểm của AC (gt)

=> MF là đường trung bình của tam giác ABC (đl)

=> F là trung điểm của AB

F Là trung điểm của MN 

=> BMAN là hình bình hành (dh)

MN _|_ AB

=> BMAN là hình thoi (dh)

c, 

 S BEMF = 6X10= 60

ht

10 tháng 12 2020

a) Xét tứ giác EDCB có ED//BC(gt)

nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét tứ giác AKCH có 

D là trung điểm của đường chéo AC(gt)

D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)

nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇒H là trung điểm của BC

hay HB=HC

mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)

nên BH=AK

Xét ΔABC có 

H là trung điểm của BC(cmt)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có 

D là trung điểm của AC(gt)

DE//BC(gt)

Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}\)(2)

Từ (1) và (2) suy ra HD//AE và HD=AE

Xét tứ giác AEHD có 

HD//AE(cmt)

HD=AE(cmt)

Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AH cắt ED tại F

nên F là trung điểm chung của AH và ED

Xét tứ giác AKHB có 

AK//HB(AK//HC, B∈HC)

AK=HB(cmt)

Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà F là trung điểm của AH(cmt)

nên F là trung điểm của BK(đpcm)

30 tháng 10 2016

1. ta có AD = BC (gt)

mà DH = BF (gt)

=> AH =FC

xét ▲AHE và ▲FCG, có:

AE = CG (gt)

góc A = góc C (gt)

AH = FC (cmt)

=>▲AHE = ▲FCG (c.g.c)

=>HE = FG (2 cạnh t/ứ)

cmtt : HG = EF

Vậy EFGH là hbh (đpcm)