cho x,y,z >0 thỏa mãn x.y.z=32, tìm min của \(A=x^2+4xy+4y^2+2z^2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
N
0
VP
0
ND
2
2 tháng 12 2016
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)
2 tháng 12 2016
A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)
Áp dụng bđt cauchy là ra bài
DN
0
TV
1
CT
0
Điểm rơi: x=4;y=2;z=4
\(A=x^2+4xy+4y^2+2z^2=\left(x-2y\right)^2+8xy+2z^2\)
Mà \(xyz=32\Leftrightarrow z^2=\frac{32^2}{x^2y^2}\)
\(VT=\left(x-2y\right)^2+8xy+\frac{2.32^2}{x^2y^2}\ge0+4xy+4xy+\frac{2.32^2}{x^2y^2}\)
Áp dụng AM-GM:
\(4xy+4xy+\frac{2048}{x^2y^2}\ge3\sqrt[3]{32768}=96\)
\(VT\ge96\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=2y\\xy=8\end{cases}}\)....