B= 1/2 + 1/3 - 1/4 +...- 1/2022 + 1/2023 C= 1/1012 + 1/1013+...+ 1/2022 + 1/2023
Tính: B-C
mọi người sửa nhanh giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-2+3-4+...+2021-2022+2023
=(1-2)+(3-4)+...+(2021-2022)+2023
=(-1)+(-1)+(-1)+...+(-1)+2023
=(-1011)+2023
=1012
Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023
=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023
=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)
=> C = 1/2. (1/1.2 - 1/2022.2023)
- Phần còn lại bạn tự tính chứ số to quá
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
\(\left(x+3\right)^{2022}+\left(\sqrt{y-2}-1\right)^{2023}=0\) \(\left(ĐKXĐ: y\ge2\right)\)
Xét \(\left(x+3\right)^{2022}\ge0\forall x\)
\(\Rightarrow\left(\sqrt{y-2}-1\right)^{2023}\le0\)
\(\Leftrightarrow\sqrt{y-2}-1\le0\)
\(\Leftrightarrow\sqrt{y-2}\le1\)
\(\Leftrightarrow y-2\le1\)
\(\Rightarrow y\le3\)
\(\Rightarrow2\le y\le3\) mà \(y\in Z\)
\(\Rightarrow\left\{{}\begin{matrix}y=2\Leftrightarrow x=-2\\y=3\Leftrightarrow x=-3\end{matrix}\right.\)
Em không nghĩ câu này đúng. Anh giải thích hộ bạn đó với ạ.