\(\text{Cho 9x + 13y chia hết cho 19. Chứng minh rằng: 7y – x chia hết cho 19.}\)
Giúp mình với nhé các bạn :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(8^5+2^{11}=34816\)
Phân tích ra thừa số nguyên tố số bằng: \(34816=2^{11}.17\)mà \(17⋮17\Leftrightarrow2^{11}.17⋮17\)
\(\Leftrightarrow34816⋮17\Leftrightarrow\left(8^5+2^{11}\right)⋮17\)
b) \(8^7-2^{18}=1835008\)
Phân tích ra thừa số nguyên tố số bằng: \(1835008=2^{18}.7=2^{17}.14\)mà \(14⋮14\Leftrightarrow2^{17}.14⋮14\Leftrightarrow2^{18}.7⋮14\)
\(\Leftrightarrow1835008⋮14\Leftrightarrow\left(8^7-2^{18}\right)⋮14\)
Lời giải : a/ Vì 85= (23)5 = 215 nên Ta có: 85+211 = 215+211 = 211.(24+1) = 211.17 chia hết cho 17
b/ Vì 87 = (23)7 = 221 nên 87- 218 = 221 – 218 = 218(23 – 1) = 218.7 = 217.14 chia hết cho 14
c/ Vì (9x + 13y) chia hết cho 19 nên 2.(9x + 13y) chia hết cho 19.
Tức là (18x + 26y) chia hết cho 19 . Ta có 18x + 26y = 19x – x + 19y + 7y = 19(x+y) +(7y – x)
chia hết cho 19, mà 19(x+y) chia hết cho 19 nên (7y – x) chia hết cho 19
Chúc Mạnh Châu học tập ngày càng giỏi nhé. Học thật tốt lý thuyết, nhớ công thức và vận dụng công thức linh hoạt.
Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath
Ta có : 1919+6919
= ( 19 + 69 ) ( 1918- 1917.69 + .... + 6919)
= 88 . ( 1918- 1917.69 + .... + 6919)
= 44 . 2 . ( 1918- 1917.69 + .... + 6919) chia hết cho 44
Vậy 1919 + 6919 chia hết cho 44
học tốt
Đặt A = a + 2b; B = 10a + b
=> 2B = 2 ( 10a + b ) = 20a + 2b
Xét 2B - A = 20a + 2b - a - 2b = 19a ⋮ 19
=> 2B - A ⋮ 19
Mặt khác A ⋮ 19
=> 2B ⋮ 19
=> B ⋮ 19 ( đpcm )
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
Ta có 6x+11y chia hết cho 31
<=>6x+(11y+31y) chia hết cho 31( 31y chia hết cho 31)
<=>6x+42y chia hết cho 31
<=>6.(x+7y) chia hết cho 31
Ta có (6;31)=1
=> x+7y chia hết cho 31(đpcm)
Vì A chia hết cho 17
=> 7A = 35x + 14y cũng chia hết cho 7
mặt khác ta có 2B = 18x + 14y
Xét 7A - 2B
= 35x + 14y - 18x - 14y
= 17x chia hết cho 17
mà 7A chia hết cho 17
=> 2B phải chia hết cho 17
mà 2 ko chia hết cho 17 => B chia hết cho 17 ( đpcm )
13x + 9x \(⋮\) 19
=> 2.( 13y + 9x ) \(⋮\)19 => 26y + 18x chia hết cho 19
Ta có :
26y + 18x - ( 7y - x ) = 26y + 18x - 7y + x = 19x + 19y = 19( x + y ) chia hết cho 19
Mặt khác : 9x + 13y lại chia hết cho 19 nên 7y - x cũng chia hết cho 19