K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\sqrt{a}\cdot\sqrt{a}-\sqrt{a}}{-\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{-\left(\sqrt{a}-1\right)}=-\sqrt{a}\)

b: \(\dfrac{2+\sqrt{3}}{2-\sqrt{7}}=\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{4-7}\)

\(=\dfrac{-\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{3}\)

\(=\dfrac{-4-2\sqrt{7}-2\sqrt{3}-\sqrt{21}}{3}\)

c: \(3xy\cdot\sqrt{\dfrac{2}{xy}}=\dfrac{3xy}{\sqrt{xy}}\cdot\sqrt{2}=3\sqrt{2}\cdot\sqrt{xy}\)

d:

\(\dfrac{3}{\sqrt[3]{3}+\sqrt[3]{2}}=\dfrac{3\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)}{3+2}\)

\(=\dfrac{3}{5}\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\)

e:

\(\dfrac{4}{\sqrt{3}+1}-\dfrac{5}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)

\(=\dfrac{4\left(\sqrt{3}+1\right)}{3-1}-\dfrac{5}{2-\sqrt{3}}-\dfrac{6}{3-\sqrt{3}}\)

\(=2\left(\sqrt{3}+1\right)-\dfrac{5\left(2+\sqrt{3}\right)}{4-3}-\dfrac{6\left(3+\sqrt{3}\right)}{6}\)

\(=2\sqrt{3}+2-10-5\sqrt{3}-3-\sqrt{3}\)

\(=-4\sqrt{3}-11\)

f:

\(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}}\)

\(=\dfrac{\sqrt{5}-1}{5-1}+\dfrac{\sqrt{9}-\sqrt{5}}{9-5}+\dfrac{\sqrt{13}-\sqrt{9}}{13-9}\)

\(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-\sqrt{9}+\sqrt{13}}{4}=\dfrac{\sqrt{13}-1}{4}\)

1 tháng 11 2023

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\\ =\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{1-\sqrt{a}}\\ =\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\\ =-\sqrt{a}\\ \dfrac{2+\sqrt{3}}{2-\sqrt{7}}\\ =\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{4-7}\\ =\dfrac{4+2\sqrt{7}+2\sqrt{3}+\sqrt{21}}{-3}\\\)

\(3xy\sqrt{\dfrac{2}{xy}}\\ =\sqrt{\dfrac{\left(3xy\right)^2\cdot2}{xy}}\\ =\sqrt{\dfrac{9x^2y^2\cdot2}{xy}}\\ =\sqrt{9xy\cdot2}\\ =\sqrt{18xy}\)

\(\dfrac{4}{\sqrt{3}+1}-\dfrac{5}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\\ =\dfrac{4\left(\sqrt{3}+1\right)}{3-1}-\dfrac{5\left(\sqrt{3}+2\right)}{3-4}+\dfrac{6\left(\sqrt{3}+3\right)}{3-9}\\ =\dfrac{4\left(\sqrt{3}+1\right)}{2}-\dfrac{5\left(\sqrt{3}+2\right)}{-1}+\dfrac{6\left(\sqrt{3}+3\right)}{-6}\\ =2\sqrt{3}+2+5\sqrt{3}+10-\sqrt{3}-3\\ =6\sqrt{3}+9\)

\(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}}\\ =\dfrac{1-\sqrt{5}}{1-5}+\dfrac{\sqrt{5}-\sqrt{9}}{5-9}+\dfrac{\sqrt{9}-\sqrt{13}}{9-13}\\ =\dfrac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}}{-4}\\ =\dfrac{1-\sqrt{13}}{-4}\)

`# gvy`

7 tháng 9 2023

\(a,\dfrac{7}{\sqrt{12}}=\dfrac{7\sqrt{3}}{\sqrt{12}\cdot\sqrt{3}}\)

\(=\dfrac{7\sqrt{3}}{\sqrt{36}}=\dfrac{7\sqrt{3}}{6}\)

\(b,\dfrac{3}{2\sqrt{3}}=\dfrac{3\sqrt{3}}{2\sqrt{3}\cdot\sqrt{3}}\)

\(=\dfrac{3\sqrt{3}}{2\cdot3}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)

\(c,\dfrac{1}{5\sqrt{12}}=\dfrac{\sqrt{3}}{5\cdot2\sqrt{3}\cdot\sqrt{3}}\)

\(=\dfrac{\sqrt{3}}{10\cdot3}=\dfrac{\sqrt{3}}{30}\)

\(d,\dfrac{2\sqrt{3}+3}{4\sqrt{3}}=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{4\sqrt{3}}\)

\(=\dfrac{2+\sqrt{3}}{4}\)

7 tháng 9 2023

a) \(\dfrac{7}{\sqrt[]{12}}=\dfrac{7}{2\sqrt[]{3}}=\dfrac{7\sqrt[]{3}}{2\sqrt[]{3}.\sqrt[]{3}}=\dfrac{7\sqrt[]{3}}{6}\)

b) \(\dfrac{3}{2\sqrt[]{3}}=\dfrac{\sqrt[]{3}.\sqrt[]{3}}{2\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{2}\)

c) \(\dfrac{1}{5\sqrt[]{12}}=\dfrac{1}{10\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{10\sqrt[]{3}.\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{30}\)

d) \(\dfrac{2\sqrt[]{3}+3}{4\sqrt[]{3}}=\dfrac{\sqrt[]{3}\left(2\sqrt[]{3}+3\right)}{4\sqrt[]{3}.\sqrt[]{3}}=\dfrac{3\left(2+\sqrt[]{3}\right)}{12}=\dfrac{2+\sqrt[]{3}}{4}\)

a) Ta có: \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{7}}\)

\(=\dfrac{7\left(\sqrt{5}-\sqrt{3}-\sqrt{7}\right)}{\left(\sqrt{5}-\sqrt{3}\right)^2-7}\)

\(=\dfrac{7\left(\sqrt{5}-\sqrt{3}-\sqrt{7}\right)}{1-2\sqrt{15}}\)

\(=\dfrac{7\left(\sqrt{5}-\sqrt{3}-\sqrt{7}\right)\left(1+2\sqrt{15}\right)}{1-60}\)

\(=\dfrac{-7\left(\sqrt{5}+10\sqrt{3}-\sqrt{3}-6\sqrt{5}-\sqrt{7}-2\sqrt{105}\right)}{59}\)

\(=\dfrac{-7\left(-5\sqrt{5}+9\sqrt{3}-\sqrt{7}-2\sqrt{105}\right)}{59}\)

 

a) \(\dfrac{7}{\sqrt{5}-\sqrt{3}-\sqrt{7}}\)

\(=\dfrac{7\left(\sqrt{5}-\sqrt{3}+\sqrt{7}\right)}{\left(\sqrt{5}-\sqrt{3}\right)^2-7}\)

\(=\dfrac{7\sqrt{5}-7\sqrt{3}+7\sqrt{7}}{8-2\sqrt{15}-7}\)

\(=\dfrac{7\sqrt{5}-7\sqrt{3}+7\sqrt{7}}{1-2\sqrt{15}}\)

\(=\dfrac{\left(7\sqrt{5}-7\sqrt{3}+7\sqrt{7}\right)\left(1+2\sqrt{15}\right)}{1-60}\)

\(=\dfrac{7\sqrt{5}+70\sqrt{3}-7\sqrt{3}-42\sqrt{5}+7\sqrt{7}+14\sqrt{105}}{-59}\)

\(=\dfrac{-35\sqrt{5}+63\sqrt{3}+7\sqrt{7}+14\sqrt{105}}{-59}\)

\(=\dfrac{35\sqrt{5}-63\sqrt{3}-7\sqrt{7}-14\sqrt{105}}{59}\)

a: \(=3xy\cdot\dfrac{\sqrt{2}}{\sqrt{xy}}=3\sqrt{2}\sqrt{xy}\)

b: \(=x\cdot\dfrac{\sqrt{6}}{\sqrt{x}}+\dfrac{\sqrt{6}}{3}\sqrt{x}\)

\(=\sqrt{6}\sqrt{x}+\dfrac{\sqrt{6}}{3}\sqrt{x}=\dfrac{4\sqrt{6}}{3}\cdot\sqrt{x}\)

c: \(=\sqrt{xy}+x\cdot\dfrac{\sqrt{y}}{\sqrt{x}}-y\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)

\(=\sqrt{xy}+\sqrt{xy}-\sqrt{xy}=\sqrt{xy}\)

a) Ta có: \(\dfrac{1}{\sqrt{5}-\sqrt{3}-\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{2}}{5-\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{2}}{5-5-2\sqrt{6}}\)

\(=\dfrac{-\sqrt{5}-\sqrt{3}-\sqrt{2}}{2\sqrt{6}}\)

\(=\dfrac{-\sqrt{6}\left(\sqrt{5}+\sqrt{3}+\sqrt{2}\right)}{12}\)

b) Ta có: \(\dfrac{2}{-1-\sqrt{2}+\sqrt{3}}\)

\(=\dfrac{2\left(-1-\sqrt{2}-\sqrt{3}\right)}{\left(-1-\sqrt{2}\right)^2-3}\)

\(=\dfrac{\left(-1-\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}}\)

\(=\dfrac{-\sqrt{2}-2-\sqrt{6}}{2}\)

 

31 tháng 3 2017
  • có nghĩa khi
    Nếu thì
    Nếu a0, b0 thì
  • Tương tự như vậy ta có:
    Nếu a 0, b 0 thì
    Nếu a0, b0 thì
  • Ta có:
    Điều kiện để căn thức có nghĩa là hay Do đó:
    Nếu b>0 thì
    Nếu thì
  • Điều kiện để có nghĩa là hay
    Cách 1.
    =
    Cách 2. Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương:
  • Điều kiện để có nghĩa là hay xy>0.
    Do đó