Tính nhanh
A=1/2 + 1/4 + 1/8 + .... + 1/256
B= 5/1.2 + 5/3.4 +....+ 5/91.92
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) \(-\dfrac{3}{7}-\left(\dfrac{2}{3}-\dfrac{3}{7}\right)=\dfrac{-3}{7}-\dfrac{2}{3}+\dfrac{3}{7}=\dfrac{-2}{3}\)
Câu 2:
b) \(\dfrac{2}{15}:\left(\dfrac{1}{3}\cdot\dfrac{4}{5}-\dfrac{1}{3}\cdot\dfrac{6}{5}\right)=\dfrac{2}{15}:\left[\dfrac{1}{3}\left(\dfrac{4}{5}-\dfrac{6}{5}\right)\right]=\dfrac{2}{15}:\left(\dfrac{1}{3}\cdot\dfrac{-2}{5}\right)=\dfrac{2}{15}:\dfrac{-2}{15}=\dfrac{2}{-2}=-1\)
c: C=1*2+2*3+3*4+...+58*59+59*60
=>3*C=1*2*3+2*3*(4-1)+3*4*(5-2)+...+58*59(60-57)+59*60(61-58)
=>3*C=1*2*3+2*3*4-1*2*3+...+58*59*60-58*59*57+59*60*61-58*59*60
=>3*C=59*60*61
=>C=59*20*61=71980
S = 1.2 + 2.3 + 3.4 +...+99.100
3S = 1.2.3 + 2.3.(4 - 1) + 3.4(5 - 2) +...+ 99.100(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100
3S = 99.100.101
3S = 999900
S = 333300
P = 1 + 3 + 5 + 7 +...+ 2015
P = (2015 + 1)1008 : 2
P = 1016064
T = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 +...+ 97 + 98 - 99 - 100
T = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +...+ (97 + 98 - 99 - 100)
T = (-4) + (-4) +...+ (-4)
T = (-4)25
T = -100
câu b bài 2:
\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
câu a bài 2:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)
\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d = 2 + 5 + 8 + 11 .... 98
= ( 92 - 2 ) : 3 + 1 = 33
= 33 . ( 98 + 2 ) : 2
= 1650
tick cho tớ với
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}=\frac{255}{256}\)
\(B=\frac{5}{1.2}+\frac{5}{3.4}+...+\frac{5}{91.92}\)
\(B=5.\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{91.92}\right)\)
\(B=5.\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{91}-\frac{1}{92}\right)\)
\(B=5.\left(\frac{1}{47}+\frac{1}{48}+...+\frac{1}{92}\right)\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{128}-\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}=\frac{255}{256}\)