Rút gọn tổng sau:
A=1+3+32+33+34+35+………..+399+3100
Tk cho mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 3² + 3³ + 3⁴ + ... + 3⁹⁹
= 3² + 3³ + (3⁴ + 3⁵ + 3⁶) + (3⁷ + 3⁸ + 3⁹) + ... + (3⁹⁷ + 3⁹⁸ + 3⁹⁹)
= 36 + 3⁴.(1 + 3 + 3²) + 3⁷.(1 + 3 + 3²) + ... + 3⁹⁷.(1 + 3 + 3²)
= 36 + 3⁴.13 + 3⁷.13 + ... + 3⁹⁷.13
= 36 + 13.(3⁴ + 3⁷ + ... + 3⁹⁷)
Do 36 không chia hết cho 13
13.(3⁴ + 3⁷ + ... + 3⁹⁷) ⋮ 13
⇒ 36 + 13.(3⁴ + 3⁷ + ... + 3⁹⁷) không chia hết cho 13
⇒ A không chia hết cho 13
Em xem lại đề nhé, có thể em viết thiếu số 3 rồi
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
Tham khảo
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)
a: Tổng các số hạng là:
\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)
Ta có: A+1=2x
\(\Leftrightarrow2x=24311\)
hay \(x=\dfrac{24311}{2}\)
A = 1 - 3 + 32 - 33 + 34 - ... + 398 - 399 + 3100
3A = 3 - 32 + 33 - 34+ 35 - ... + 399 - 3100 + 3101
3A + A = 3 - 32+ 33-34+35 -...+399 - 3100 + 3101 + 1 - 3 +...-399+3100
4A = 3101 + 1
A = \(\dfrac{3^{101}+1}{4}\)
A=1+3+32+33+34+35+………..+399+3100
3A = 3+32+33+34+35+………..+3100+3101
3A - A = ( 3+32+33+34+35+………..+3100+3101 ) - ( 1+3+32+33+34+35+………..+399+3100 )
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
3mu101