tính 1 1/3 * 1 1/8 *1 1/15 *1 1/24 *...*1 1/99
chú ý * là dấu nhân nha!
ví dụ :1 cách 1/a
1 là phần nguyên
Giaỉ kĩ hộ nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\frac{1}{3}\cdot1\frac{1}{8}\cdot1\frac{1}{15}\cdot1\frac{1}{24}\cdot...\cdot1\frac{1}{99}\)
\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot\frac{25}{24}\cdot...\cdot\frac{100}{99}\)
\(=\frac{2.2\cdot3.3\cdot4.4\cdot5.5\cdot...\cdot10.10}{1.3\cdot2.4\cdot3.5\cdot4.6\cdot...\cdot9.11}\)
\(=\frac{2.10}{1.11}=\frac{20}{11}\)
"." = nhân
a. 100 - 7 ( x - 5 ) = 58
<=> 7 ( x - 5 ) = 100 - 58
<=> 7 ( x - 5 ) = 42
<=> x - 5 = 42 : 7
<=> x - 5 = 6
<=> x = 6 + 5
<=> x = 11
Tương tự tiếp.
a;100-7(x-5)=58
=>7(x-5)=100-58=42
=>x-5=42:7=6
=>x=6+5=11
b;12(x-1):3=72
=>12(x-1)=72.3=216
=>x-1=216:12=18
=>x=18+1=19
c;12-4(x-1)=4
=>4(x-1)=12-4=8
=>x-1=8:4=2
=>x=2+1=3
d;32-12x=8
=>12x=32-8=24
=>x=24:12=2
nho h do nhe viet moi tay lam day biet ko
\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha
1/2-(4/12+9/12)<x<1/24-(3/24-8/24)
1/2-13/12<x<1/24-(-5/24)
-7/12<x<1/4
=>x\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) E{0}
ta có:\(\frac{1}{2}-\left(\frac{1}{3}+\frac{3}{4}\right)=\frac{-1}{12}=-0,08333333\)
mà \(\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)=\frac{1}{4}=0.25\)
nên suy ra không có số nguyên x nào thỏa mãn đề bài.
\(\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{8}\right)\times\left(1+\frac{1}{15}\right)\times...\times\left(1+\frac{1}{9999}\right)\)
\(=\frac{2^2}{1\cdot3}\times\frac{3^2}{2\cdot4}\times\frac{4^2}{3\cdot5}\times...\times\frac{100^2}{99\cdot101}\)
\(=\frac{2\cdot3\cdot4\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot99}\times\frac{2\cdot3\cdot4\cdot...\cdot100}{3\cdot4\cdot5\cdot...\cdot101}\)
\(=\frac{100}{1}\times\frac{2}{101}=\frac{200}{101}.\)