K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)

=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)

=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)

b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)

c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)

=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)

=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)

=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)

=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)

=>\(x=\dfrac{1}{4}\Omega+k\Omega\)

28 tháng 10 2023

Bạn đang nhầm Pi sanh Omega

23 tháng 6 2021

a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)

\(\Rightarrow3x+60=30+2k180\)

\(\Rightarrow3x=2k180-30\)

\(\Leftrightarrow x=120k-10\)

Vậy ...

b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)

Vậy ...

c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)

\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

Vậy ...

d, Ta có : \(\cot\left(2x+\pi\right)=-1\)

\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)

\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)

Vậy ...

 

23 tháng 6 2021

a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))

Vậy...

b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)

\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)

Vậy...

d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)

\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)

\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)

Vậy...

a: =>2sin(x+pi/3)=-1

=>sin(x+pi/3)=-1/2

=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi

=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi

b: =>2sin(x-30 độ)=-1

=>sin(x-30 độ)=-1/2

=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ

=>x=k*360 độ hoặc x=240 độ+k*360 độ

c: =>2sin(x-pi/6)=-căn 3

=>sin(x-pi/6)=-căn 3/2

=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi

=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi

d: =>2sin(x+10 độ)=-căn 3

=>sin(x+10 độ)=-căn 3/2

=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ

=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ

e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)

=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)

=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ

=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ

f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)

=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi

=>x=pi/12+k2pi hoặc x=19/12pi+k2pi

12 tháng 9 2023

g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

h) \(1+sin\left(x-30^o\right)=0\)

\(\Leftrightarrow sin\left(x-30^o\right)=-1\)

\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow x=-60^0+k360^o\)

NV
26 tháng 2 2023

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
26 tháng 2 2023

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)

d: cos^2x=1

=>sin^2x=0

=>sin x=0

=>x=kpi

a: =>sin 4x=cos(x+pi/6)

=>sin 4x=sin(pi/2-x-pi/6)

=>sin 4x=sin(pi/3-x)

=>4x=pi/3-x+k2pi hoặc 4x=2/3pi+x+k2pi

=>x=pi/15+k2pi/5 hoặc x=2/9pi+k2pi/3

b: =>x+pi/3=pi/6+k2pi hoặc x+pi/3=-pi/6+k2pi

=>x=-pi/2+k2pi hoặc x=-pi/6+k2pi

c: =>4x=5/12pi+k2pi hoặc 4x=-5/12pi+k2pi

=>x=5/48pi+kpi/2 hoặc x=-5/48pi+kpi/2

NV
25 tháng 7 2021

1.

\(\Leftrightarrow cos\left(2x+\dfrac{4\pi}{3}\right)=0\)

\(\Leftrightarrow2x+\dfrac{4\pi}{3}=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow2x=-\dfrac{5\pi}{6}+k\pi\)

\(\Leftrightarrow x=-\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)

b.

\(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

c.

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)

27 tháng 7 2021

cho em hỏi làm sao mà từ đề ra được ạ

b) \(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)

c)\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

8 tháng 2 2022

a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)

\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)

\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)

\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)

\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)

\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)

\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được:

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

NV
15 tháng 2 2022

(Giả sử chọn k=-1)

Đặt \(u_n=v_n-1\Rightarrow v_{n+1}-1=\dfrac{5\left(v_n-1\right)+4}{v_n-1+2}=\dfrac{5v_n-1}{v_n+1}\)

\(\Rightarrow v_{n+1}=1+\dfrac{5v_n-1}{v_n+1}=\dfrac{6v_n}{v_n+1}\)

Mục đích chỉ cần biến đổi tới đây, sau đó nghịch đảo 2 vế:

\(\Rightarrow\dfrac{1}{v_{n+1}}=\dfrac{v_n+1}{6v_n}=\dfrac{1}{6v_n}+\dfrac{1}{6}\)

Đặt \(\dfrac{1}{v_n}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{v_1}=\dfrac{1}{u_1+1}=\dfrac{1}{6}\\x_{n+1}=\dfrac{1}{6}x_n+\dfrac{1}{6}\end{matrix}\right.\)

Rồi đó, đưa về dãy cơ bản \(\Rightarrow x_{n+1}-\dfrac{1}{5}=\dfrac{1}{6}\left(x_n-\dfrac{1}{5}\right)\)

Đặt \(x_n-\dfrac{1}{5}=y_n\Rightarrow\left\{{}\begin{matrix}y_1=x_1-\dfrac{1}{5}=-\dfrac{1}{30}\\y_{n+1}=\dfrac{1}{6}y_n\end{matrix}\right.\)

\(\Rightarrow y_n=-\dfrac{1}{30}\left(\dfrac{1}{6}\right)^{n-1}\Rightarrow x_n=y_n+\dfrac{1}{5}=-\dfrac{1}{30}.\left(\dfrac{1}{6}\right)^{n-1}+\dfrac{1}{5}\)

\(\Rightarrow v_n=\dfrac{1}{x_n}=...\Rightarrow u_n=v_n-1=\dfrac{1}{x_n}-1=...\)

Cách này là cách cơ bản, có hướng làm cố định để đưa về các dãy quen thuộc