K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

a) Đáy lớn hình thang là:

      8 + 6 = 14 cm

b) Chiều cao AH là:

     ( 6 + 8 ) : 2 = 7 cm

  Diện tích hình thang ABCD là:

     8 x 6 = 48 cm2

c)  bạn tự làm nha!    

17 tháng 2 2019

Gợi ý kẻ AK song song với BC cắt EF tại I

21 tháng 4 2020

M làm cái j đấy

21 tháng 4 2020

Hàn Thất haizz

Chủ tịch giả nghèo… và cái kết: 'Đừng coi thường người khác vì vẻ ...

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Bài 1:

Áp dụng định lý Talet cho $EO\parallel DC$: 

$\frac{OE}{DC}=\frac{AO}{AC}(1)$

Áp dụng định lý Talet cho $OF\parallel DC$:

$\frac{OF}{DC}=\frac{OB}{BD}(2)$

Áp dụng định lý Talet cho $AB\parallel CD$:

$\frac{OA}{OC}=\frac{OB}{OD}\Leftrightarrow \frac{OA}{OA+OC}=\frac{OB}{OB+OD}\Leftrightarrow \frac{OA}{AC}=\frac{OB}{BD}(3)$

Từ $(1);(2);(3)\Rightarrow \frac{OE}{DC}=\frac{OF}{DC}$

$\Rightarrow OE=OF$ (đpcm)

 

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Hình bài 1:

undefined

Xét hình thang ABCD có EF//AB//CD

nên AE/ED=BF/FC

=>6/FC=2

hay FC=3(cm)

21 tháng 1 2022

Ta có : AB//CD 

Theo định lí Ta-lét , ta có :

\(\Rightarrow\dfrac{AE}{ED}=\dfrac{BF}{FC}\Leftrightarrow\dfrac{4}{2}=\dfrac{6}{FC}\)

\(\Rightarrow FC=\dfrac{2.6}{4}=3\left(cm\right)\)

17 tháng 1 2015

Bạn tự vẽ hình nhé

Gọi O là giao điểm của AC và EF

Ta có AE/AD = AO/AC (tam giác ADC có EO//DC)

         CF/CB = CO/CA (tam giác ABC có OF//DC)

=> AE/AD + CF/CB = AO/AC + CO/AC = (AO + CO)/AC = AC/AC = 1

16 tháng 6 2021

Bạn tham khảo ở link này nha

https://hoc24.vn/cau-hoi/cho-hinh-thang-abcd-ab-cd-mot-duong-thang-song-song-voi-2-day-cat-canh-ben-ad-bc-theo-thu-tu-o-e-f-tinh-fc-biet-ae-4cm-ed-2cm-bf-6cm.252472345103

16 tháng 6 2021

https://hoc24.vn/cau-hoi/cho-hinh-thang-abcd-ab-cd-mot-duong-thang-song-song-voi-2-day-cat-canh-ben-ad-bc-theo-thu-tu-o-e-f-tinh-fc-biet-ae-4cm-ed-2cm-bf-6cm.252472345103

  
14 tháng 3 2021

Bạn tự vẽ hình nhé

Xét \(\Delta ACD\) có OE // CD(gt)

=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)

Xét \(\Delta BCD\) có OF // CD (gt)

=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)

Mặt khác AB // CD nên  \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF